RUS  ENG
Full version
PEOPLE

Ayriyan Èdik Artashovich

Publications in Math-Net.Ru

  1. Reversible differential schemes for elliptical oscillators

    Zap. Nauchn. Sem. POMI, 528 (2023),  54–78
  2. On the trajectories of dynamical systems with quadratic right sides, calculated by reversible difference schemes

    Zap. Nauchn. Sem. POMI, 517 (2022),  17–35
  3. Properties of nematic LC planar and smoothly-irregular waveguide structures: research in the experiment and using computer modeling

    Computer Optics, 43:6 (2019),  976–982
  4. Numeric modeling of static electric field effect on nematic liquid crystal director orientation

    Mat. Model., 30:4 (2018),  97–107
  5. Differential schemes for the ordinary differential equations defining a projective correspondence between layers

    Zap. Nauchn. Sem. POMI, 468 (2018),  202–220
  6. Application of functional integrals to stochastic equations

    Mat. Model., 28:11 (2016),  113–125
  7. Stable computer modeling of thin-film generalized waveguide Luneburg lens

    Mat. Model., 26:11 (2014),  37–44
  8. Application of adiabatic modes method for calculation and design of thin-film waveguide generalized Luneburg lens

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2012, no. 3,  35–45
  9. Blowup/scattering alternative for a discrete family of static critical solutions with various number of unstable eigenmodes

    Mat. Model., 22:8 (2010),  119–144
  10. Zero approximation of vector model for smoothly-irregular optical waveguide

    Mat. Model., 22:8 (2010),  42–54
  11. Numerical studies of perturbed static solutions decay in the coupled system of Yang-Mills-dilaton equations with use of MPI technology

    Mat. Model., 17:6 (2005),  103–121
  12. Unstable even-parity eigenmodes of the regular static $\mathrm{SU}(2)$ Yang–Mills-dilaton solutions

    Zh. Vychisl. Mat. Mat. Fiz., 45:5 (2005),  921–934
  13. Oscillatory Properties of Second-Order Functional Differential Equations of the Neutral Type

    Differ. Uravn., 38:4 (2002),  565–569
  14. Oscillation Criteria for Second-Order Differential Equations of Neutral Type with Mixed Arguments

    Differ. Uravn., 38:1 (2002),  126–128
  15. Additive difference schemes for filtration problems in multilayer systems

    Mat. Model., 13:10 (2001),  91–102


© Steklov Math. Inst. of RAS, 2026