RUS  ENG
Full version
PEOPLE

Grabovoy Andrey Valerievich

Publications in Math-Net.Ru

  1. Interpreting transformer-based classifiers via clustering

    Dokl. RAN. Math. Inf. Proc. Upr., 527 (2025),  432–448
  2. Dynamic division of labor in hybrid AI: contrasting encoder strategies and their impact on LSTM modulators

    Dokl. RAN. Math. Inf. Proc. Upr., 527 (2025),  117–133
  3. Beyond familiar domains: a study of the generalization capability of machine-generated image detectors

    Dokl. RAN. Math. Inf. Proc. Upr., 527 (2025),  103–116
  4. Pairwise image matching for plagiarism detection

    Dokl. RAN. Math. Inf. Proc. Upr., 527 (2025),  68–83
  5. Enhancing fMRI data decoding with spatiotemporal characteristics in limited dataset

    Dokl. RAN. Math. Inf. Proc. Upr., 527 (2025),  11–30
  6. Sample size determination: likelihood bootstrapping

    Zh. Vychisl. Mat. Mat. Fiz., 65:2 (2025),  235–242
  7. Stack more LLMs: efficient detection of machine-generated texts via perplexity approximation

    Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024),  228–237
  8. Unraveling the Hessian: a key to smooth convergence in loss function landscapes

    Dokl. RAN. Math. Inf. Proc. Upr., 520:2 (2024),  57–70
  9. Artificially generated text fragments search in academic documents

    Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023),  308–317
  10. Text reuse detection in handwritten documents

    Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023),  297–307
  11. Analysis of the properties of probabilistic models in expert-augmented learning problems

    Avtomat. i Telemekh., 2022, no. 10,  47–59
  12. Probabilistic interpretation of the distillation problem

    Avtomat. i Telemekh., 2022, no. 1,  150–168
  13. Bayesian distillation of deep learning models

    Avtomat. i Telemekh., 2021, no. 11,  16–29
  14. Prior distribution selection for a mixture of experts

    Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021),  1149–1161
  15. Ordering the set of neural network parameters

    Inform. Primen., 14:2 (2020),  58–65
  16. Estimation of the relevance of the neural network parameters

    Inform. Primen., 13:2 (2019),  62–70


© Steklov Math. Inst. of RAS, 2026