|
|
Publications in Math-Net.Ru
-
Construction of barriers for singularly perturbed parabolic problems with cubic nonlinearities taking into account the inflection point
Zh. Vychisl. Mat. Mat. Fiz., 65:12 (2025), 2054–2063
-
Nonlinear method of corner boundary functions with the influence of an inflection point
Zh. Vychisl. Mat. Mat. Fiz., 65:1 (2025), 36–49
-
Solving inequalities using radical and adjacent functions
Chebyshevskii Sb., 25:3 (2024), 70–85
-
The support barrier functions for nonlinear parabolic problems
Chebyshevskii Sb., 25:2 (2024), 235–242
-
Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities
Chebyshevskii Sb., 25:1 (2024), 26–41
-
Nonlinear method of angular boundary functions in problems with cubic nonlinearities
Chebyshevskii Sb., 24:1 (2023), 27–39
-
Mathematical models of combustion processes
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 185 (2020), 50–57
-
Corner boundary layer in boundary value problems for singularly perturbed parabolic equations with nonmonotonic nonlinearities
Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019), 1581–1590
-
Corner boundary layer in boundary value problems for singularly perturbed parabolic equations with nonlinearities
Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019), 102–117
© , 2026