RUS  ENG
Full version
PEOPLE

Arsent'ev Ivan Nikitich

Publications in Math-Net.Ru

  1. Growth of thin-film AlGaN/GaN epitaxial heterostructures on hybrid substrates containing layers of silicon carbide and porous silicon

    Fizika i Tekhnika Poluprovodnikov, 56:6 (2022),  547–552
  2. Properties of compliant porous silicon-based substrates formed by two-stage etching

    Fizika i Tekhnika Poluprovodnikov, 55:11 (2021),  1021–1026
  3. Effect of pretreatment of the silicon substrate on the properties of GaN films grown by chloride–hydride vapor-phase epitaxy

    Fizika i Tekhnika Poluprovodnikov, 55:8 (2021),  704–710
  4. Structural and spectroscopic studies of epitaxial GaAs layers grown on compliant substrates based on a superstructure layer and protoporous silicon

    Fizika i Tekhnika Poluprovodnikov, 55:1 (2021),  86–95
  5. Spectroscopic studies of integrated GaAs/Si heterostructures

    Fizika i Tekhnika Poluprovodnikov, 55:1 (2021),  34–40
  6. Influence of a nanoporous silicon layer on the practical implementation and specific features of the epitaxial growth of GaN layers on SiC/$por$-Si/$c$-Si templates

    Fizika i Tekhnika Poluprovodnikov, 54:5 (2020),  491–503
  7. Optical properties of GaN/SiC/$por$-Si/Si(111) hybrid heterostructures

    Fizika i Tekhnika Poluprovodnikov, 54:4 (2020),  346–354
  8. On the phase composition, morphology, and optical and electronic characteristics of AlN nanofilms grown on misoriented GaAs (100) substrates

    Fizika i Tekhnika Poluprovodnikov, 53:11 (2019),  1584–1592
  9. Structural and morphological properties of hybrid heterostructures based on gan grown on a compliant por-Si(111) substrate

    Fizika i Tekhnika Poluprovodnikov, 53:8 (2019),  1141–1151
  10. Investigation of the current–voltage characteristics of new MnO$_{2}$/GaAs(100) and V$_{2}$O$_{5}$/GaAs(100) heterostructures subjected to heat treatment

    Fizika i Tekhnika Poluprovodnikov, 53:8 (2019),  1074–1079
  11. Comprehensive study of the nanoporous si layer influence on atomic and electron structure and optical properties of A$^{\mathrm{III}}$N/por-Si heterostructures grown by plasma assisted molecular beam epitaxy

    Fizika i Tekhnika Poluprovodnikov, 53:7 (2019),  1010–1016
  12. Influence of a por-Si buffer layer on the optical properties of epitaxial In$_{x}$Ga$_{1-x}$N/Si(111) heterostructures with a nanocolumnar film morphology

    Fizika i Tekhnika Poluprovodnikov, 53:1 (2019),  70–76
  13. Electronic and optical properties of hybrid GaN/por-Si(111) heterostructures

    Kvantovaya Elektronika, 49:6 (2019),  545–551
  14. Effect of a $por$-Si buffer layer on the structure and morphology of epitaxial In$_{x}$Ga$_{1-x}$N/Si(111) heterostructures

    Fizika i Tekhnika Poluprovodnikov, 52:13 (2018),  1553–1562
  15. Effect of conditions of electrochemical etching on the morphological, structural, and optical properties of porous gallium arsenide

    Fizika i Tekhnika Poluprovodnikov, 52:9 (2018),  1041–1048
  16. Effect of misorientation and preliminary etching of the substrate on the structural and optical properties of integrated GaAs/Si(100) heterostructures produced by vapor phase epitaxy

    Fizika i Tekhnika Poluprovodnikov, 52:8 (2018),  881–890
  17. Influence of substrate misorientation on the composition and the structural and photoluminescence properties of epitaxial layers grown on GaAs(100)

    Fizika i Tekhnika Poluprovodnikov, 52:1 (2018),  118–124
  18. Experimental studies of the effects of atomic ordering in epitaxial Ga$_{x}$In$_{1-x}$P on their optical properties

    Fizika i Tekhnika Poluprovodnikov, 51:9 (2017),  1160–1167
  19. Experimental studies of the effects of atomic ordering in epitaxial Ga$_{x}$In$_{1-x}$P alloys on their structural and morphological properties

    Fizika i Tekhnika Poluprovodnikov, 51:8 (2017),  1131–1137
  20. Epitaxial Al$_{x}$Ga$_{1-x}$As : Mg alloys with different conductivity types

    Fizika i Tekhnika Poluprovodnikov, 51:1 (2017),  124–132
  21. Growth features and spectroscopic structure investigations of nanoprofiled AlN films formed on misoriented GaAs substrates

    Fizika i Tekhnika Poluprovodnikov, 50:9 (2016),  1283–1294
  22. Structural and optical properties of GaAs(100) with a thin surface layer doped with chromium

    Fizika i Tekhnika Poluprovodnikov, 50:7 (2016),  869–876
  23. Properties of AlN films deposited by reactive ion-plasma sputtering

    Fizika i Tekhnika Poluprovodnikov, 49:10 (2015),  1429–1433
  24. Al$_x$Ga$_{1-x}$As/GaAs(100) hetermostructures with anomalously high carrier mobility

    Fizika i Tekhnika Poluprovodnikov, 49:8 (2015),  1043–1049
  25. Investigations of nanodimensional Al$_2$O$_3$ films deposited by ion-plasma sputtering onto porous silicon

    Fizika i Tekhnika Poluprovodnikov, 49:7 (2015),  936–941
  26. Structure and optical properties of thin Al$_2$O$_3$ films deposited by the reactive ion-plasma sputtering method on GaAs (100) substrates

    Fizika i Tekhnika Poluprovodnikov, 48:11 (2014),  1564–1569
  27. Structural and optical properties of heavily doped Al$_x$Ga$_{1-x}$As$_{1-y}$P$_y$:Mg alloys produced by metal-organic chemical vapor deposition

    Fizika i Tekhnika Poluprovodnikov, 48:8 (2014),  1123–1131
  28. Structure and optical properties of heterostructures based on MOCVD (Al$_x$Ga$_{1-x}$As$_{1-y}$P$_y$)$_{1-z}$Si$_z$ alloys

    Fizika i Tekhnika Poluprovodnikov, 48:1 (2014),  23–31
  29. Passivation of the GaP(111) surface by treatment in selenium vapors

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 40:3 (2014),  20–26
  30. Semiconductor lasers with internal wavelength selection

    Fizika i Tekhnika Poluprovodnikov, 47:1 (2013),  124–128
  31. Properties of epitaxial (Al$_x$Ga$_{1-x}$As)$_{1-y}$C$_y$ alloys grown by MOCVD autoepitaxy

    Fizika i Tekhnika Poluprovodnikov, 47:1 (2013),  9–14
  32. Superstructured ordering in Al$_x$Ga$_{1-x}$As and Ga$_x$In$_{1-x}$P alloys

    Fizika i Tekhnika Poluprovodnikov, 47:1 (2013),  3–8
  33. Effect of the finishing treatment of a gallium arsenide surface on the spectrum of electron states in $n$-GaAs (100)

    Fizika i Tekhnika Poluprovodnikov, 46:6 (2012),  756–760
  34. Structural and spectral features of MOCVD Al$_x$Ga$_y$In$_{1-x-y}$As$_z$P$_{1-z}$/GaAs (100) alloys

    Fizika i Tekhnika Poluprovodnikov, 46:6 (2012),  739–750
  35. Spinodal decomposition of Ga$_x$In$_{1-x}$As$_y$P$_{1-y}$ quaternary alloys

    Fizika i Tekhnika Poluprovodnikov, 45:11 (2011),  1489–1497
  36. Effect of silicon on relaxation of the crystal lattice in MOCVD–hydride Al$_x$Ga$_{1-x}$As (100) heterostructures

    Fizika i Tekhnika Poluprovodnikov, 45:4 (2011),  488–499
  37. Relaxation of crystal lattice parameters and structural ordering in In$_x$Ga$_{1-x}$As epitaxial alloys

    Fizika i Tekhnika Poluprovodnikov, 44:8 (2010),  1140–1146
  38. The substructure and luminescence of low-temperature AlGaAs/GaAs(100) heterostructures

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  194–199
  39. SPECTRAL CHARACTERISTICS OF INGAASP/GAAS(111) LPE-LASERS (LAMBDA=0.8MU-M) DESIGNED FOR THE PUMPING OF YAG-ND3+

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 15:15 (1989),  45–49
  40. Квантово-размерные InGaAsP/GaAs (${\lambda=0.86\div0.78}$ мкм) лазеры раздельного ограничения (${J_{\text{п}}=100\,\text{А/см}^{2}}$, КПД${}=59$%)

    Fizika i Tekhnika Poluprovodnikov, 22:6 (1988),  1031–1034
  41. POWER CONTINUOUS INGAASP/GAAS HETEROLASER WITH THE DIELECTRIC MIRROR (IPOR=100A/CM2,D=1.1WATT,EFFICIENCY=66-PERCENT,T=10-DEGREES-C

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:8 (1988),  699–702
  42. MULTI-LAYERED STRUCTURES IN THE JN-GA-AS-P SYSTEM PREPARED BY THE LIQUID EPITAXY METHOD

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 14:7 (1988),  593–597
  43. Low-Threshold Quantum-Dimensional InGaAsP/GaAs Double-Heterostructure Lasers of Separate Limitation Produced by Liquid Epitaxy (${\lambda=0.86}$ $\mu m$, ${I_{\text{п}}=90\,\text{A/cm}^{2}}$, ${L=\infty}$; ${I_{\text{п}}=165\,\text{A/cm}^{2}}$, ${L=1150}$ $\mu m$, ${T=300}$ K)

    Fizika i Tekhnika Poluprovodnikov, 21:8 (1987),  1501–1503
  44. Quantum-Dimensional Effects in Liquid-Phase InGaAsP/GaAs Heterostructures with Active-Ran Thickness between 40 and 300 Å

    Fizika i Tekhnika Poluprovodnikov, 21:1 (1987),  178–181
  45. Quantum-Dimensional InGaAsP/GaAs Separate-Limitation Double-Heterostructure Lasers Produced by Liquid-Epitaxy Method (${\lambda=0.79}\,\mu m,$ ${I_{\text{п}}=124\,\text{A/cm}^{2}}$, ${T=300}$ K)

    Fizika i Tekhnika Poluprovodnikov, 21:1 (1987),  162–164
  46. Visible $In\,Ga\,As\,P/Ga\,As\,P$ separate confinement lasers, manufactured by the liquid epitaxy-method ($\lambda=0.65\div0.67$ mu-m, $I_n=3\div0.8\,\text{kA}/\text{cm}^{2}$; $P=5$ mVt, $\lambda=0.665$ mu-m, $T=300$ K)

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 13:6 (1987),  372–374
  47. Photoluminescence of InGaAsP/GaAs Quantum-Dimensional Heterostructures Produced by the Method of Liquid Epitaxy

    Fizika i Tekhnika Poluprovodnikov, 20:12 (1986),  2145–2149
  48. Luminescence Efficiency and Boundary-Recombination Rate in Heteroslructures in Al$-$Ga$-$As and In$-$Ga$-$As$-$P

    Fizika i Tekhnika Poluprovodnikov, 20:4 (1986),  708–712
  49. $0.677 \mu m$ – Continuous Injection InGaAsP/GaAsP DH Laser with Selective Limitation Produced by Liquid Epitaxy

    Fizika i Tekhnika Poluprovodnikov, 19:6 (1985),  1115–1118
  50. Auger Profiles of Composition and Luminescent Studies of Liquid-Phase InGaAsP Heterostructures with Active Regions ${(1.5\div5)\cdot10^{-6}}$  cm

    Fizika i Tekhnika Poluprovodnikov, 19:6 (1985),  1108–1114
  51. Continuous Separately-Limited Laser on InGaAsP/GaAs Double Heterostructures Grown by Liquid Epitay of 77 mWt Power (${T=300}$ K, ${\lambda=0.87}$ $\mu$m)

    Fizika i Tekhnika Poluprovodnikov, 19:1 (1985),  136–138
  52. Continuous short-wave ($\lambda=0,677\,\mu m$) injection-laser based on $In\,Ga\,As\,P/Ga\,As\,P$ RO DGS with $10$ mVt power

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:19 (1985),  1153–1157
  53. Band lasers based on PO $In\,Ga\,As\,P/Ga\,As$ DHS ($\lambda\simeq0.87\,\mu m$) with the thin active area

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:4 (1985),  205–209
  54. Инжекционные РО InGaAsP/InP ДГС лазеры с порогом $300\,\text{А/см}^{2}$ (четырехсколотые образцы, ${\lambda=1.25}$ мкм, ${T=300}$ K)

    Fizika i Tekhnika Poluprovodnikov, 18:11 (1984),  2057–2060
  55. Спонтанные и когерентные излучательные переходы в InGaAsP/InP ДГС с тонкой активной областью (${d_{\text{а}}=2\cdot10^{-5}\div2\cdot10^{-6}}$ см), полученные методом жидкостной эпитаксии

    Fizika i Tekhnika Poluprovodnikov, 18:11 (1984),  2041–2045
  56. Низкопороговые инжекционные InGaAsP/GaAs ДГС лазеры с раздельным ограничением, полученные методом жидкостной эпитаксии (${\lambda=0.78\div0.87}$ мкм, ${I_{\text{пор}}=460\,\text{А/см}^{2}}$, ${T=300}$ K)

    Fizika i Tekhnika Poluprovodnikov, 18:9 (1984),  1655–1659
  57. Low-Threshold Visible GalnAsP/GaAsP DH Lasers (${T=300}$ K, ${\lambda=0.70{-}0.66}\,\mu m,$ ${I_{\text{thresh}}\simeq1.5{-}3.2\,\text{кА}/\text{cm}^{2}}$)

    Fizika i Tekhnika Poluprovodnikov, 18:4 (1984),  757–758
  58. Visible Low-Threshold Pulsed and Continuous InGaAsP/InGaP/GaAs DH Lasers in the $0.73{-}0.79 \mu m$ Region (${T=300}$ K, ${I_{n}=3.5{-}1.3\,\text{mA}/\text{cm}^{2}}$)

    Fizika i Tekhnika Poluprovodnikov, 18:1 (1984),  162–165
  59. Температурная зависимость порога генерации в ДГ-InGaAsP/GaAs-структурах (${\lambda_{\text{ген}}=729}$ нм, ${T\geqslant300}$ K, ${J_{\text{пор}}\geqslant5\cdot10^{3}\,\text{А/см}^{2}}$)

    Fizika i Tekhnika Poluprovodnikov, 17:5 (1983),  843–846
  60. Фотолюминесцентные исследования перераспределения неравновесных носителей заряда в InGaAsP/InP с двумя активными областями

    Fizika i Tekhnika Poluprovodnikov, 17:4 (1983),  714–717
  61. Фотолюминесценция двойной гетероструктуры при возбуждении широкозонного эмиттера

    Fizika i Tekhnika Poluprovodnikov, 17:2 (1983),  242–246

  62. Photoluminescence properties of heavily doped heterostructures based on (Al$_x$Ga$_{1-x}$As)$_{1-y}$Si$_y$ solid solutions

    Fizika Tverdogo Tela, 55:10 (2013),  2054–2057
  63. X-ray diffraction studies of heterostructures based on solid solutions Al$_x$Ga$_{1-x}$As$_y$P$_{1-y}$ : Si

    Fizika Tverdogo Tela, 55:10 (2013),  2046–2049


© Steklov Math. Inst. of RAS, 2026