RUS  ENG
Full version
PEOPLE

Blokhin Sergei Anatol'evich

Publications in Math-Net.Ru

  1. Amplitude noise of 89X nm-range single-mode intracavity-contacted vertical-cavity surface-emitting lasers

    Optics and Spectroscopy, 133:8 (2025),  847–852
  2. Surface lasing in micropillar cavity lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:21 (2025),  58–62
  3. Bimodal whispering-gallery mode lasing in micropillar cavity lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:5 (2025),  41–44
  4. The study of the phase noise of 89X nm-range single-mode intra-cavity contacted vcsels

    Optics and Spectroscopy, 132:12 (2024),  1230–1232
  5. Linewidth of 89Õ nm-range intra-cavity contacted VCSELs

    Optics and Spectroscopy, 132:12 (2024),  1226–1229
  6. Study of the structural and optical properties of InGaAs quantum dots

    Fizika i Tekhnika Poluprovodnikov, 58:6 (2024),  318–325
  7. Analysis of Zn diffusion process from the vapor phase in InGaAs/InP materials

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:22 (2024),  48–52
  8. Linewidth study of MBE-grown wafer-fused single-mode 1.55 $\mu$m VCSELs

    Optics and Spectroscopy, 131:11 (2023),  1486–1489
  9. Emission linewidth and $\alpha$-factor of 1.55 $\mu$m-range vertical-cavity surface-emitting lasers based on InGaAs/InGaAlAs quantum wells

    Optics and Spectroscopy, 131:8 (2023),  1095–1100
  10. Investigation of a $p$$i$$n$ photodetector with an absorbing medium based on InGaAs/GaAs quantum well-dots

    Fizika i Tekhnika Poluprovodnikov, 57:3 (2023),  202–206
  11. Investigation of photoluminescence in the InGaAs/GaAs system with 1100-nm range quantum dots

    Fizika i Tekhnika Poluprovodnikov, 57:1 (2023),  63–70
  12. Analysis of the internal optical losses of the 89X nm-range intracavity-contacted vertical-cavity surface-emitting lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:20 (2023),  43–46
  13. Simulation and analysis of the optical characteristics of cylindrical micropillars with InAs/GaAs quantum dots

    Pis'ma v Zh. Èksper. Teoret. Fiz., 116:9 (2022),  592–598
  14. 1550 nm range high-speed single-mode vertical-cavity surface-emitting lasers

    Fizika i Tekhnika Poluprovodnikov, 56:8 (2022),  814–823
  15. Peculiarities of growth of InAs quantum dot arrays with low surface density by molecular beam epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:24 (2022),  42–46
  16. Microwave Schottky diodes based on single GaN nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:15 (2022),  22–25
  17. High-speed photodetectors based on InGaAs/GaAs quantum well-dots

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:4 (2022),  32–35
  18. High-speed vertically emitting lasers in the spectral range of 1550 nm, implemented in the framework of wafer sintering method

    Kvantovaya Elektronika, 52:10 (2022),  878–884
  19. Investigation of the characteristics of the InGaAs/InAlGaAs superlattice for 1300 nm range vertical-cavity surface emitting lasers

    Zhurnal Tekhnicheskoi Fiziki, 91:12 (2021),  2008–2017
  20. Investigation of the noise characteristics of vertical-cavity surface-emitting laser with a rhomboidal oxide current aperture for use in a Cs-based compact atomic magnetometer

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:24 (2021),  3–8
  21. Analysis of internal optical loss of 1.3 $\mu$m vertical-cavity surface-emitting laser based on $n^{+}$-InGaAs/$p^{+}$-InGaAs/$p^{+}$-InAlGaAs tunnel junction

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:23 (2021),  3–7
  22. Impact of transverse optical confinment on performance of 1.55 $\mu$m vertical-cavity surface-emitting lasers with a buried tunnel junction

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:22 (2021),  3–8
  23. Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:21 (2021),  36–38
  24. Increasing the optical power of InGaAs/GaAs microdisk lasers transferred to a silicon substrate by thermal compression

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:20 (2021),  3–6
  25. The design of an electrically-driven single photon source of the 1.3-$\mu$m spectral range based on a vertical microcavity with intracavity contacts

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:5 (2021),  23–27
  26. Investigation of anomalous lasing in vertical-cavity surface-emitting lasers of the 850-nm spectral range with a double oxide current aperture at large gain-to-cavity detuning

    Optics and Spectroscopy, 128:8 (2020),  1151–1159
  27. 1.55 $\mu$m-range vertical cavity surface emitting lasers, manufactured by wafer fusion of heterostuctures grown by solid-source molecular beam epitaxy

    Fizika i Tekhnika Poluprovodnikov, 54:10 (2020),  1088–1096
  28. A study of the photoresponse in graphene produced by chemical vapor deposition

    Fizika i Tekhnika Poluprovodnikov, 54:9 (2020),  833–840
  29. The effect of a saturable absorber in long-wavelength vertical-cavity surface-emitting lasers fabricated by wafer fusion technology

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:24 (2020),  49–54
  30. A vertical-cavity surface-emitting laser for the 1.55-$\mu$m spectral range with tunnel junction based on $n^{++}$-InGaAs/$p^{++}$-InGaAs/$p^{++}$-InAlGaAs layers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:17 (2020),  21–25
  31. Analysis of the internal optical losses of the vertical-cavity surface-emitting laser of the spectral range of 1.55 $\mu$m formed by a plate sintering technique

    Optics and Spectroscopy, 127:1 (2019),  145–149
  32. Influence of output optical losses on the dynamic characteristics of 1.55-$\mu$m wafer-fused vertical-cavity surface-emitting lasers

    Fizika i Tekhnika Poluprovodnikov, 53:8 (2019),  1128–1134
  33. Evaluation of the impact of surface recombination in microdisk lasers by means of high-frequency modulation

    Fizika i Tekhnika Poluprovodnikov, 53:8 (2019),  1122–1127
  34. InAlAs/InGaAs/InP high-electron-mobility transistors with a composite channel and higher breakdown characteristics

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:21 (2019),  29–33
  35. Heterobarrier varactors with nonuniformly doped modulation layers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:20 (2019),  51–54
  36. Energy consumption for high-frequency switching of a quantum-dot microdisk laser

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:16 (2019),  49–51
  37. Vertical-cavity surface-emitting lasers with intracavity contacts and a rhomboidal current aperture for compact atomic clocks

    Kvantovaya Elektronika, 49:2 (2019),  187–190
  38. Optical gain of 1550-nm range multiple-quantum-well heterostructures and limiting modulation frequencies of vertical-cavity surface-emitting lasers based on them

    Optics and Spectroscopy, 125:2 (2018),  229–233
  39. Emission-line width and $\alpha$-factor of 850-nm single-mode vertical-cavity surface-emitting lasers based on InGaAs/AlGaAs quantum wells

    Fizika i Tekhnika Poluprovodnikov, 52:1 (2018),  98–104
  40. Epitaxial InGaAs/InAlAs/AlAs structures for heterobarrier varactors with low leakage current

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:19 (2018),  16–23
  41. A design and new functionality of antiwaveguiding vertical-cavity surface-emitting lasers for a wavelength of 850 nm

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:1 (2018),  85–94
  42. The influence of cavity design on the linewidth of near-ir single-mode vertical-cavity surface-emitting lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:1 (2018),  67–75
  43. Vertical-cavity surface-emitting 1.55-$\mu$m lasers fabricated by fusion

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:1 (2018),  59–66
  44. High-speed semiconductor vertical-cavity surface-emitting lasers for optical data-transmission systems (review)

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:1 (2018),  7–43
  45. Emission-line width and $\alpha$-factor of 850-nm single-mode vertical-cavity surface-emitting lasers based on InGaAs/AlGaAs quantum wells

    Fizika i Tekhnika Poluprovodnikov, 51:12 (2017),  1697
  46. Molecular-beam epitaxy of InGaAs/InAlAs/AlAs structures for heterobarrier varactors

    Fizika i Tekhnika Poluprovodnikov, 51:11 (2017),  1484–1488
  47. Optical properties of metamorphic hybrid heterostuctures for vertical-cavity surface-emitting lasers operating in the 1300-nm spectral range

    Fizika i Tekhnika Poluprovodnikov, 51:9 (2017),  1176–1181
  48. Peaking of optical pulses in vertical-cavity surface-emitting lasers with an active region based on submonolayer InGaAs quantum dots

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 43:24 (2017),  17–23
  49. Polarization characteristics of 850-nm vertical-cavity surface-emitting lasers with intracavity contacts and a rhomboidal oxide current aperture

    Fizika i Tekhnika Poluprovodnikov, 50:10 (2016),  1408–1413
  50. Optical properties of InGaAs/InGaAlAs quantum wells for the 1520–1580 nm spectral range

    Fizika i Tekhnika Poluprovodnikov, 50:9 (2016),  1208–1212
  51. Microdisk injection lasers for the 1.27-$\mu$m spectral range

    Fizika i Tekhnika Poluprovodnikov, 50:3 (2016),  393–397
  52. A study of distributed dielectric Bragg reflectors for vertically emitting lasers of the near-IR range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:20 (2016),  57–65
  53. Laser generation at 1.3 $\mu$m in vertical microcavities containing InAs/InGaAs quantum dot arrays under optical pumping

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:19 (2016),  70–79
  54. Study of high-speed semiconductor VCSELs based on AlInGaAs heterostructures with large gain-cavity detuning

    Fizika i Tekhnika Poluprovodnikov, 49:1 (2015),  89–93
  55. Effect of the photon lifetime on the characteristics of 850-nm vertical-cavity surface-emitting lasers with fully doped distributed Bragg reflectors and an oxide current aperture

    Fizika i Tekhnika Poluprovodnikov, 48:12 (2014),  1697–1703
  56. Degradation-robust 850-nm vertical-cavity surface-emitting lasers for 25Gb/s optical data transmission

    Fizika i Tekhnika Poluprovodnikov, 48:1 (2014),  81–87
  57. Precise calibration of thickness and composition of epitaxial AlGaAs heterostructures with vertical-cavity optical microresonators

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 40:24 (2014),  22–30
  58. Efficient electro-optic semiconductor medium based on type-II heterostructures

    Fizika i Tekhnika Poluprovodnikov, 47:11 (2013),  1542–1553
  59. Single-spatial-mode semiconductor VCSELs with a nonplanar upper dielectric DBR

    Fizika i Tekhnika Poluprovodnikov, 47:7 (2013),  985–989
  60. Influence of optical losses on the dynamic characteristics of linear arrays of near-infrared vertical-cavity surface-emitting lasers

    Fizika i Tekhnika Poluprovodnikov, 47:6 (2013),  833–837
  61. High-frequency electrical properties of a vertical-cavity surface-emitting laser with a monolithically integrated electro-optical modulator

    Fizika i Tekhnika Poluprovodnikov, 47:5 (2013),  684–689
  62. Optical anisotropy of InGaAs quantum dots

    Fizika i Tekhnika Poluprovodnikov, 47:1 (2013),  87–91
  63. Influence of the position of InGaAs quantum dot array on the spectral characteristics of AlGaAs/GaAs photovoltaic converters

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:22 (2012),  43–49
  64. Decreasing parasitic capacitance in vertical-cavity surface-emitting laser with selectively oxidized aperture

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:3 (2012),  10–16
  65. Effect of AlGaAs–(AlGa)$_x$O$_y$ pedestal parameters on characteristics of a microdisk laser with active region based on InAs/InGaAs quantum dots

    Fizika i Tekhnika Poluprovodnikov, 45:7 (2011),  992–995
  66. Matrices of 960-nm vertical-cavity surface-emitting lasers

    Fizika i Tekhnika Poluprovodnikov, 45:6 (2011),  836–839
  67. Dynamic properties of AlGaAs vertical cavity surface emitting lasers with active region based on submonolayer InAs insertions

    Fizika i Tekhnika Poluprovodnikov, 45:5 (2011),  688–693
  68. Submicron surface relief fabrication technology for epitaxial GaAs structures with thin AlGaAs stop layers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:24 (2011),  9–15
  69. Analysis of mechanisms of carrier emission in the $p$$i$$n$ structures with In(Ga)As quantum dots

    Fizika i Tekhnika Poluprovodnikov, 44:10 (2010),  1352–1356
  70. Optical anisotropy of InAs quantum dots

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:23 (2010),  24–30


© Steklov Math. Inst. of RAS, 2026