RUS  ENG
Full version
PEOPLE

Artemova Elizaveta Markovna

Publications in Math-Net.Ru

  1. Strange repeller in the dynamics of an elliptical foil with an attached vortex in an ideal fluid

    Computer Research and Modeling, 17:6 (2025),  1051–1067
  2. The Motion of an Elliptic Foil in the Field of a Fixed Vortex Source

    Rus. J. Nonlin. Dyn., 21:2 (2025),  135–155
  3. Dynamics of an Elliptic Foil with an Attached Vortex in an Ideal Fluid: The Integrable Case

    Regul. Chaotic Dyn., 30:6 (2025),  931–951
  4. The motion of a balanced circular foil in the field of fixed point sources

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:4 (2025),  601–618
  5. Bifurcation Analysis of the Problem of Two Vortices on a Finite Flat Cylinder

    Rus. J. Nonlin. Dyn., 20:1 (2024),  95–111
  6. Abnormal extremals in the sub-Riemannian problem for a general model of a robot with a trailer

    Mat. Sb., 214:10 (2023),  3–24
  7. Dynamics of two vortices on a finite flat cylinder

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:4 (2023),  642–658
  8. A Nonholonomic Model and Complete Controllability of a Three-Link Wheeled Snake Robot

    Rus. J. Nonlin. Dyn., 18:4 (2022),  681–707
  9. Dynamics of Two Vortex Rings in a Bose – Einstein Condensate

    Regul. Chaotic Dyn., 27:6 (2022),  713–732
  10. The Motion of an Unbalanced Circular Disk in the Field of a Point Source

    Regul. Chaotic Dyn., 27:1 (2022),  24–42
  11. Investigation of the orbital stability of rectilinear motions of roller-racer on a vibrating plane

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022),  615–629
  12. Stability of regular vortex polygons in Bose–Einstein condensate

    Izv. IMI UdGU, 56 (2020),  20–29
  13. Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass

    Regul. Chaotic Dyn., 25:6 (2020),  689–706
  14. Control of the motion of a circular cylinder in an ideal fluid using a source

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020),  604–617
  15. Integrability and Chaos in Vortex Lattice Dynamics

    Regul. Chaotic Dyn., 24:1 (2019),  101–113


© Steklov Math. Inst. of RAS, 2026