|
|
Publications in Math-Net.Ru
-
Parameter determining the concentration of crystal structure defects in shock-compressed copper
Fizika Goreniya i Vzryva, 61:3 (2025), 137–149
-
Generation of defects during shock compression of aluminum
Fizika Goreniya i Vzryva, 59:6 (2023), 136–146
-
Electrical resistance of aluminum under shock compression: experimental data
Fizika Goreniya i Vzryva, 59:1 (2023), 129–136
-
Isotherm of aluminum based on the generalized equation for the Grüneisen coefficient
Fizika Goreniya i Vzryva, 58:2 (2022), 109–117
-
Nonequilibrium of the physical state of copper under impact compression
Fizika Goreniya i Vzryva, 57:3 (2021), 135–142
-
Low-parametric equation of state of aluminum
TVT, 58:2 (2020), 179–187
-
Electrical resistance of copper at high pressures and temperatures: equilibrium model and generation of defects of the crystal structure under shock compression
Fizika Goreniya i Vzryva, 55:5 (2019), 116–125
-
Small-parameter equation of state of copper
Fizika Goreniya i Vzryva, 54:4 (2018), 107–122
-
Cascade magnetocumulative generator on the basis of inductively coupled circuits with a variable coupling coefficient
Prikl. Mekh. Tekh. Fiz., 59:3 (2018), 14–25
-
Generation of electromagnetic energy in a magnetic cumulation generator with the use of inductively coupled circuits with a variable coupling coefficient
Prikl. Mekh. Tekh. Fiz., 58:4 (2017), 3–13
-
Electrical resistance of copper under shock compression: Experimental data
Fizika Goreniya i Vzryva, 52:1 (2016), 121–130
-
Electrical resistance of high-pressure phases of tin under shock compression
Fizika Goreniya i Vzryva, 51:4 (2015), 94–100
-
Electrical conductivity of copper and tin in the region of a low density and a high specific energy
Zhurnal Tekhnicheskoi Fiziki, 85:4 (2015), 42–45
-
Phase transformations in shock-compressed ytterbium
Fizika Goreniya i Vzryva, 50:2 (2014), 115–123
-
Shock compressibility of high-porosity copper and tin powders
Zhurnal Tekhnicheskoi Fiziki, 84:10 (2014), 142–144
-
Nonlinear magnetic field diffusion in a substance metallized by shock compression
Zhurnal Tekhnicheskoi Fiziki, 84:4 (2014), 47–52
-
Electrical conductivity of copper powders under shock compression
Fizika Goreniya i Vzryva, 49:3 (2013), 114–121
-
Measurement of electrical conductivity of condensed substances in shock waves (Review)
Fizika Goreniya i Vzryva, 47:4 (2011), 3–23
-
Experimental study of shock-wave magnetic cumulation
Fizika Goreniya i Vzryva, 44:2 (2008), 106–116
-
Electrode gauge as an instrument for studying shock compression and metallization of the substance
Fizika Goreniya i Vzryva, 43:5 (2007), 116–125
-
Interaction of aluminum with detonation products
Fizika Goreniya i Vzryva, 42:1 (2006), 120–129
-
Electrical conductivity of metal powders under shock compression
Fizika Goreniya i Vzryva, 41:5 (2005), 128–139
-
Electromagnetic field formed by shock compression of a conducting magnetic
Fizika Goreniya i Vzryva, 39:6 (2003), 107–118
-
Detonation properties and electrical conductivity of explosive–metal additive mixtures
Fizika Goreniya i Vzryva, 38:2 (2002), 104–120
-
Current waves generated by detonation of an explosive in a magnetic field
Fizika Goreniya i Vzryva, 37:6 (2001), 93–101
-
Application of the electromagnetic model for diagnosing shock–wave processes in metals
Fizika Goreniya i Vzryva, 37:2 (2001), 121–127
-
Electromagnetic field and current waves in a conductor compressed by a shock wave in a magnetic field
Fizika Goreniya i Vzryva, 36:6 (2000), 153–163
-
Effect of the conductivity of a shock-compressed substance on the electromagnetic response of a shock-formed set of conductors
Fizika Goreniya i Vzryva, 33:4 (1997), 128–136
-
Shock-induced conductivity waves in a conductor placed in an external magnetic field
Fizika Goreniya i Vzryva, 32:6 (1996), 116–122
-
Magnetic-field compression by shock-induced conduction waves in high-porosity materials
Prikl. Mekh. Tekh. Fiz., 37:6 (1996), 15–25
-
Shock-induced conductivity waves in metallic samples
Fizika Goreniya i Vzryva, 31:4 (1995), 109–116
-
Using liquid explosives for welding
Fizika Goreniya i Vzryva, 30:5 (1994), 115–117
-
Electromagnetic effects in a measurement cell for investigating the electrical properties of shock-compressed substances
Fizika Goreniya i Vzryva, 30:2 (1994), 71–76
-
Shock-induced conduction waves in electrophysical experiments
Prikl. Mekh. Tekh. Fiz., 30:2 (1989), 132–145
-
Measurement of high electrical conductivity in silicon in shock waves
Prikl. Mekh. Tekh. Fiz., 29:6 (1988), 61–67
-
Cascade magnetocumulative generator with flux interception
Prikl. Mekh. Tekh. Fiz., 28:4 (1987), 125–131
-
Shock-wave method of generating megaGauss magnetic fields
Prikl. Mekh. Tekh. Fiz., 28:3 (1987), 15–24
-
Obtaining strong magnetic fields with magnetocumulative generators based on a porous material
Prikl. Mekh. Tekh. Fiz., 24:5 (1983), 37–41
-
Magnetic course generators using the transition of a semiconductor material into a conducting state
Prikl. Mekh. Tekh. Fiz., 21:5 (1980), 125–129
© , 2026