RUS  ENG
Full version
PEOPLE

Gilev Sergey Danilovich

Publications in Math-Net.Ru

  1. Parameter determining the concentration of crystal structure defects in shock-compressed copper

    Fizika Goreniya i Vzryva, 61:3 (2025),  137–149
  2. Generation of defects during shock compression of aluminum

    Fizika Goreniya i Vzryva, 59:6 (2023),  136–146
  3. Electrical resistance of aluminum under shock compression: experimental data

    Fizika Goreniya i Vzryva, 59:1 (2023),  129–136
  4. Isotherm of aluminum based on the generalized equation for the Grüneisen coefficient

    Fizika Goreniya i Vzryva, 58:2 (2022),  109–117
  5. Nonequilibrium of the physical state of copper under impact compression

    Fizika Goreniya i Vzryva, 57:3 (2021),  135–142
  6. Low-parametric equation of state of aluminum

    TVT, 58:2 (2020),  179–187
  7. Electrical resistance of copper at high pressures and temperatures: equilibrium model and generation of defects of the crystal structure under shock compression

    Fizika Goreniya i Vzryva, 55:5 (2019),  116–125
  8. Small-parameter equation of state of copper

    Fizika Goreniya i Vzryva, 54:4 (2018),  107–122
  9. Cascade magnetocumulative generator on the basis of inductively coupled circuits with a variable coupling coefficient

    Prikl. Mekh. Tekh. Fiz., 59:3 (2018),  14–25
  10. Generation of electromagnetic energy in a magnetic cumulation generator with the use of inductively coupled circuits with a variable coupling coefficient

    Prikl. Mekh. Tekh. Fiz., 58:4 (2017),  3–13
  11. Electrical resistance of copper under shock compression: Experimental data

    Fizika Goreniya i Vzryva, 52:1 (2016),  121–130
  12. Electrical resistance of high-pressure phases of tin under shock compression

    Fizika Goreniya i Vzryva, 51:4 (2015),  94–100
  13. Electrical conductivity of copper and tin in the region of a low density and a high specific energy

    Zhurnal Tekhnicheskoi Fiziki, 85:4 (2015),  42–45
  14. Phase transformations in shock-compressed ytterbium

    Fizika Goreniya i Vzryva, 50:2 (2014),  115–123
  15. Shock compressibility of high-porosity copper and tin powders

    Zhurnal Tekhnicheskoi Fiziki, 84:10 (2014),  142–144
  16. Nonlinear magnetic field diffusion in a substance metallized by shock compression

    Zhurnal Tekhnicheskoi Fiziki, 84:4 (2014),  47–52
  17. Electrical conductivity of copper powders under shock compression

    Fizika Goreniya i Vzryva, 49:3 (2013),  114–121
  18. Measurement of electrical conductivity of condensed substances in shock waves (Review)

    Fizika Goreniya i Vzryva, 47:4 (2011),  3–23
  19. Experimental study of shock-wave magnetic cumulation

    Fizika Goreniya i Vzryva, 44:2 (2008),  106–116
  20. Electrode gauge as an instrument for studying shock compression and metallization of the substance

    Fizika Goreniya i Vzryva, 43:5 (2007),  116–125
  21. Interaction of aluminum with detonation products

    Fizika Goreniya i Vzryva, 42:1 (2006),  120–129
  22. Electrical conductivity of metal powders under shock compression

    Fizika Goreniya i Vzryva, 41:5 (2005),  128–139
  23. Electromagnetic field formed by shock compression of a conducting magnetic

    Fizika Goreniya i Vzryva, 39:6 (2003),  107–118
  24. Detonation properties and electrical conductivity of explosive–metal additive mixtures

    Fizika Goreniya i Vzryva, 38:2 (2002),  104–120
  25. Current waves generated by detonation of an explosive in a magnetic field

    Fizika Goreniya i Vzryva, 37:6 (2001),  93–101
  26. Application of the electromagnetic model for diagnosing shock–wave processes in metals

    Fizika Goreniya i Vzryva, 37:2 (2001),  121–127
  27. Electromagnetic field and current waves in a conductor compressed by a shock wave in a magnetic field

    Fizika Goreniya i Vzryva, 36:6 (2000),  153–163
  28. Effect of the conductivity of a shock-compressed substance on the electromagnetic response of a shock-formed set of conductors

    Fizika Goreniya i Vzryva, 33:4 (1997),  128–136
  29. Shock-induced conductivity waves in a conductor placed in an external magnetic field

    Fizika Goreniya i Vzryva, 32:6 (1996),  116–122
  30. Magnetic-field compression by shock-induced conduction waves in high-porosity materials

    Prikl. Mekh. Tekh. Fiz., 37:6 (1996),  15–25
  31. Shock-induced conductivity waves in metallic samples

    Fizika Goreniya i Vzryva, 31:4 (1995),  109–116
  32. Using liquid explosives for welding

    Fizika Goreniya i Vzryva, 30:5 (1994),  115–117
  33. Electromagnetic effects in a measurement cell for investigating the electrical properties of shock-compressed substances

    Fizika Goreniya i Vzryva, 30:2 (1994),  71–76
  34. Shock-induced conduction waves in electrophysical experiments

    Prikl. Mekh. Tekh. Fiz., 30:2 (1989),  132–145
  35. Measurement of high electrical conductivity in silicon in shock waves

    Prikl. Mekh. Tekh. Fiz., 29:6 (1988),  61–67
  36. Cascade magnetocumulative generator with flux interception

    Prikl. Mekh. Tekh. Fiz., 28:4 (1987),  125–131
  37. Shock-wave method of generating megaGauss magnetic fields

    Prikl. Mekh. Tekh. Fiz., 28:3 (1987),  15–24
  38. Obtaining strong magnetic fields with magnetocumulative generators based on a porous material

    Prikl. Mekh. Tekh. Fiz., 24:5 (1983),  37–41
  39. Magnetic course generators using the transition of a semiconductor material into a conducting state

    Prikl. Mekh. Tekh. Fiz., 21:5 (1980),  125–129


© Steklov Math. Inst. of RAS, 2026