RUS  ENG
Full version
PEOPLE

Tsagareishvili Vakhtang Shalvovich

Publications in Math-Net.Ru

  1. Unconditional Convergence of General Fourier Series

    Trudy Mat. Inst. Steklova, 319 (2022),  83–93
  2. General orthonormal systems and absolute convergence

    Izv. RAN. Ser. Mat., 84:4 (2020),  208–220
  3. Generalization of Golubov's Result for the Haar System

    Mat. Zametki, 107:1 (2020),  154–157
  4. Multipliers of Absolute Convergence

    Mat. Zametki, 105:3 (2019),  433–443
  5. Unconditional convergence of Fourier series for functions of bounded variation

    Sibirsk. Mat. Zh., 59:1 (2018),  86–94
  6. On Fourier coefficients of functions with respect to general orthonormal systems

    Izv. RAN. Ser. Mat., 81:1 (2017),  183–202
  7. Functions of the Lipschitz class and summability of Fourier series

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10,  83–88
  8. Convergence of Fourier Series with Respect to General Orthonormal Systems

    Mat. Zametki, 99:4 (2016),  618–622
  9. The Fourier Coefficients of Continuous Functions with Respect to Certain Orthonormal Systems

    Mat. Zametki, 99:3 (2016),  428–440
  10. On absolute convergence of multiple Fourier series

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 9,  12–21
  11. On the Fourier coefficients of functions of bounded variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 8,  14–23
  12. Some classes of functions and Fourier coefficients with respect to general orthonormal systems

    Trudy Mat. Inst. Steklova, 280 (2013),  162–174
  13. Absolute convergence of Fourier series of functions of class $\operatorname{Lip}1$ and of functions of bounded variation

    Izv. RAN. Ser. Mat., 76:2 (2012),  215–224
  14. Fourier Coefficients of Continuous Functions

    Mat. Zametki, 91:5 (2012),  691–703
  15. On the Partial Sums of the Fourier Series of Functions of Bounded Variation

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:3 (2012),  121–128
  16. Functional conditions for the convergence of Fourier series with respect to general orthonormal systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 5,  68–74
  17. Fourier–Haar Coefficients and Properties of Continuous Functions

    Mat. Zametki, 87:3 (2010),  443–452
  18. Absolute convergence of Fourier–Haar series of functions of two variables

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  14–25
  19. On the Structure of the Class $A(\varphi)$

    Mat. Zametki, 80:2 (2006),  296–308
  20. Variation of Fourier–Haar coefficients

    Mat. Sb., 195:3 (2004),  143–160
  21. Enthalpy and specific heat of strontium and barium zirconates at high temperatures

    TVT, 14:1 (1976),  78–82


© Steklov Math. Inst. of RAS, 2026