|
|
Publications in Math-Net.Ru
-
Unconditional Convergence of General Fourier Series
Trudy Mat. Inst. Steklova, 319 (2022), 83–93
-
General orthonormal systems and absolute convergence
Izv. RAN. Ser. Mat., 84:4 (2020), 208–220
-
Generalization of Golubov's Result for the Haar System
Mat. Zametki, 107:1 (2020), 154–157
-
Multipliers of Absolute Convergence
Mat. Zametki, 105:3 (2019), 433–443
-
Unconditional convergence of Fourier series for functions of bounded variation
Sibirsk. Mat. Zh., 59:1 (2018), 86–94
-
On Fourier coefficients of functions with respect to general orthonormal systems
Izv. RAN. Ser. Mat., 81:1 (2017), 183–202
-
Functions of the Lipschitz class and summability of Fourier series
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10, 83–88
-
Convergence of Fourier Series with Respect to General Orthonormal Systems
Mat. Zametki, 99:4 (2016), 618–622
-
The Fourier Coefficients of Continuous Functions with Respect to Certain Orthonormal Systems
Mat. Zametki, 99:3 (2016), 428–440
-
On absolute convergence of multiple Fourier series
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 9, 12–21
-
On the Fourier coefficients of functions of bounded variation
Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 8, 14–23
-
Some classes of functions and Fourier coefficients with respect to general orthonormal systems
Trudy Mat. Inst. Steklova, 280 (2013), 162–174
-
Absolute convergence of Fourier series of functions of class $\operatorname{Lip}1$ and of functions of bounded variation
Izv. RAN. Ser. Mat., 76:2 (2012), 215–224
-
Fourier Coefficients of Continuous Functions
Mat. Zametki, 91:5 (2012), 691–703
-
On the Partial Sums of the Fourier Series of Functions of Bounded Variation
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:3 (2012), 121–128
-
Functional conditions for the convergence of Fourier series with respect to general orthonormal systems
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 5, 68–74
-
Fourier–Haar Coefficients and Properties of Continuous Functions
Mat. Zametki, 87:3 (2010), 443–452
-
Absolute convergence of Fourier–Haar series of functions of two variables
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 14–25
-
On the Structure of the Class
$A(\varphi)$
Mat. Zametki, 80:2 (2006), 296–308
-
Variation of Fourier–Haar coefficients
Mat. Sb., 195:3 (2004), 143–160
-
Enthalpy and specific heat of strontium and barium zirconates at high temperatures
TVT, 14:1 (1976), 78–82
© , 2026