RUS  ENG
Full version
PEOPLE

Milman Vitali Davidovich

Publications in Math-Net.Ru

  1. Essay on Kashin's Remarkable 1977 Decomposition Theorem

    Trudy Mat. Inst. Steklova, 319 (2022),  213–222
  2. Novel view on classical convexity theory

    Zh. Mat. Fiz. Anal. Geom., 16:3 (2020),  291–311
  3. The extended Leibniz rule and related equations in the space of rapidly decreasing functions

    Zh. Mat. Fiz. Anal. Geom., 14:3 (2018),  336–361
  4. “Irrational” constructions in convex geometry

    Algebra i Analiz, 29:1 (2017),  222–236
  5. A Note on Operator Equations Describing the Integral

    Zh. Mat. Fiz. Anal. Geom., 9:1 (2013),  51–58
  6. Rigidity and stability of the Leibniz and the chain rule

    Trudy Mat. Inst. Steklova, 280 (2013),  198–214
  7. An operator equation characterizing the Laplacian

    Algebra i Analiz, 24:4 (2012),  137–155
  8. Using rademacher permutations to reduce randomness

    Algebra i Analiz, 19:1 (2007),  23–45
  9. Entropy Extension

    Funktsional. Anal. i Prilozhen., 40:4 (2006),  65–71
  10. Phenomena arising from high dimensionality

    Uspekhi Mat. Nauk, 59:1(355) (2004),  157–168
  11. Level curves of functions on multidimensional complex homogeneous spaces

    Uspekhi Mat. Nauk, 27:4(166) (1972),  219–220
  12. On a property of functions defined on infinite-dimensional manifolds

    Dokl. Akad. Nauk SSSR, 200:4 (1971),  781–784
  13. Asymptotic properties of functions of several variables defined on homogeneous spaces

    Dokl. Akad. Nauk SSSR, 199:6 (1971),  1247–1250
  14. New proof of the theorem of A. Dvoretzky on intersections of convex bodies

    Funktsional. Anal. i Prilozhen., 5:4 (1971),  28–37
  15. Geometric theory of Banach spaces. Part II. Geometry of the unit sphere

    Uspekhi Mat. Nauk, 26:6(162) (1971),  73–149
  16. James classes of minimal systems, and their connection with the isometry properties of $B$-spaces

    Dokl. Akad. Nauk SSSR, 192:4 (1970),  742–745
  17. Geometric theory of Banach spaces. Part I. The theory of basis and minimal systems

    Uspekhi Mat. Nauk, 25:3(153) (1970),  113–174
  18. A certain transformation of convex functions and a duality of the $\beta$ and $\delta$ characteristics of a $B$-space

    Dokl. Akad. Nauk SSSR, 187:1 (1969),  33–35
  19. Properties of sequences in locally convex spaces

    Dokl. Akad. Nauk SSSR, 184:2 (1969),  278–281
  20. Spectrum of bounded continuous functions specified on a unit sphere in Banach space

    Funktsional. Anal. i Prilozhen., 3:2 (1969),  67–79
  21. Some properties of strictly singular operators

    Funktsional. Anal. i Prilozhen., 3:1 (1969),  93–94
  22. Fixed points of noncompact mappings

    Dokl. Akad. Nauk SSSR, 183:1 (1968),  41–44
  23. A numerical method of finding partially stable singular points of ordinary differential equations

    Dokl. Akad. Nauk SSSR, 182:6 (1968),  1271–1273
  24. The basis structure of a $B$-space and properties of the sphere which are invariant relative to isomorphisms

    Dokl. Akad. Nauk SSSR, 179:4 (1968),  779–782
  25. The infinite dimensional geometry of the unit sphere of a Banach space

    Dokl. Akad. Nauk SSSR, 177:3 (1967),  514–517
  26. A numerical method for finding asymptotically stable solutions of systems of ordinary differential equations

    Dokl. Akad. Nauk SSSR, 167:4 (1966),  739–742
  27. On the Convolution of Information in a Classical Probability Scheme

    Probl. Peredachi Inf., 2:2 (1966),  29–38
  28. Certain properties of unconditional bases

    Dokl. Akad. Nauk SSSR, 162:2 (1965),  269–272
  29. The geometry of imbeddings with empty intersection. The structure of the unit sphere in a non-reflexive space

    Mat. Sb. (N.S.), 66(108):1 (1965),  109–118
  30. Perturbations of sequences of elements of a Banach space

    Sibirsk. Mat. Zh., 6:2 (1965),  398–412
  31. Some properties of non-reflexive Banach spaces

    Mat. Sb. (N.S.), 65(107):4 (1964),  486–497
  32. Some geometric properties of non-reflexive spaces

    Dokl. Akad. Nauk SSSR, 152:1 (1963),  52–54
  33. On a transformation operator for Sturm–Liouville equations in the non-selfadjoint case

    Dokl. Akad. Nauk SSSR, 142:5 (1962),  1019–1021
  34. A transformation operator for Sturm–Liouville differential equations in the non-selfadjoint case

    Mat. Sb. (N.S.), 59(101) (supplementary) (1962),  145–164
  35. On the stability of motion in the presence of impulses

    Sibirsk. Mat. Zh., 1:2 (1960),  233–237

  36. Letter to the Editor

    Uspekhi Mat. Nauk, 25:6(156) (1970),  245


© Steklov Math. Inst. of RAS, 2026