RUS  ENG
Full version
PEOPLE

Kuzichev Alexander Sergeevich

Publications in Math-Net.Ru

  1. A conservative extension of a formal arithmetic

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 6,  77–78
  2. A theorem on consistency of the Zermelo–Fraenkel system $\mathrm{ZF}$

    Dokl. Akad. Nauk SSSR, 273:5 (1983),  1053–1057
  3. Arithmetic completeness of type-free logic

    Dokl. Akad. Nauk SSSR, 270:6 (1983),  1323–1327
  4. The consistency of Quine's system $\mathcal{N}F$

    Dokl. Akad. Nauk SSSR, 270:3 (1983),  537–541
  5. Arithmetically consistent $\lambda$-theories of type-free logic

    Dokl. Akad. Nauk SSSR, 268:2 (1983),  288–292
  6. Set theory in type-free combinatorially complete systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 3,  36–42
  7. On the representation of first order theories in type-free combinatorially complete systems

    Dokl. Akad. Nauk SSSR, 266:1 (1982),  23–27
  8. Axiomatic theories in combinatorially complete systems

    Dokl. Akad. Nauk SSSR, 264:3 (1982),  538–542
  9. Arithmetically consistent $\lambda$-theories

    Dokl. Akad. Nauk SSSR, 262:4 (1982),  795–799
  10. Arithmetic theories constructed on the basis of lambda-conversion

    Dokl. Akad. Nauk SSSR, 261:4 (1981),  792–796
  11. On the imbedding of formal arithmetic in combinatorially complete systems

    Dokl. Akad. Nauk SSSR, 250:6 (1980),  1310–1315
  12. Classes of objects having normal forms in the system of $\lambda$-conversion with logical operators

    Dokl. Akad. Nauk SSSR, 249:1 (1979),  41–45
  13. On the consistency of formal arithmetic

    Dokl. Akad. Nauk SSSR, 243:5 (1978),  1123–1126
  14. The theorem on the midsequent in the $\mathscr{A}$-system of $\lambda$-conversion

    Dokl. Akad. Nauk SSSR, 243:1 (1978),  19–21
  15. A theorem on the consistency of formal arithmetic

    Dokl. Akad. Nauk SSSR, 238:2 (1978),  269–272
  16. Formal arithmetic in the $\mathscr{A}$-system of $\lambda$-conversion

    Dokl. Akad. Nauk SSSR, 236:5 (1977),  1072–1075
  17. A system of $\lambda$-conversion with logical operators and an equality operator

    Dokl. Akad. Nauk SSSR, 236:4 (1977),  796–799
  18. A $\lambda$-conversion system with a deductive operator of formal implication

    Dokl. Akad. Nauk SSSR, 212:6 (1973),  1290–1292
  19. Deductive-combinatorial construction of the theory of functionality

    Dokl. Akad. Nauk SSSR, 209:3 (1973),  541–543
  20. $F^n$-systems of combinatory logic. Generalized arithmetic operators

    Dokl. Akad. Nauk SSSR, 198:4 (1971),  759–761

  21. Correction: "Arithmetically consistent $\lambda $-theories of type-free logic"

    Dokl. Akad. Nauk SSSR, 272:1 (1983),  10


© Steklov Math. Inst. of RAS, 2026