RUS  ENG
Full version
PEOPLE

Zuev Lev Borisovich

Publications in Math-Net.Ru

  1. Estimation of the density of mobile dislocations by the acoustic method

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 52:2 (2026),  12–14
  2. Two-component model of autowave plasticity. Macroscale and invariants of plastic deformation

    Fizika Tverdogo Tela, 67:6 (2025),  1046–1051
  3. The emergence of large-scale correlations in plastic flow

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:15 (2025),  3–5
  4. Structural nature of localized plasticity autowaves dispersion

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:1 (2025),  45–48
  5. Dispersion of localized plasticity autowaves in active deformable mediums

    Fizika Tverdogo Tela, 66:11 (2024),  2045–2051
  6. Quantized nature of abrupt plastic deformation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:12 (2024),  8–11
  7. Plastic flow in Cu–Ni solid solutions as an autowave process

    Fizika Tverdogo Tela, 65:3 (2023),  444–450
  8. Autowave model of an elastic-plastic transition in a deformable medium

    Fizika Tverdogo Tela, 64:8 (2022),  1006–1011
  9. Autowave description of the temperature effect during deformation of FCC metals

    Zhurnal Tekhnicheskoi Fiziki, 92:12 (2022),  1814–1819
  10. Temperature dependence of autowave characteristics of localized plasticity

    Fizika Tverdogo Tela, 63:1 (2021),  48–54
  11. Autowave description of plasticity of materials with an unstable phase structure at the macroscale level

    Zhurnal Tekhnicheskoi Fiziki, 91:2 (2021),  267–274
  12. Autowaves of localized deformation induced by phase transformation

    Fizika Tverdogo Tela, 62:12 (2020),  2020–2025
  13. Autowave plasticity: principles and possibilities

    Zhurnal Tekhnicheskoi Fiziki, 90:5 (2020),  773–781
  14. The temperature dependence of the autowave mechanism of plastic flow

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:24 (2020),  41–44
  15. A scale effect accompanying autowave plastic strain

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:17 (2020),  18–20
  16. Characteristics of localized plasticity autowaves and the Debye parameter in metals

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:14 (2019),  34–35
  17. Kinetics of macrolocalization patterns of plastic flow of metals

    Fizika Tverdogo Tela, 60:7 (2018),  1358–1364
  18. Origin of elastic–plastic deformation invariant

    Zhurnal Tekhnicheskoi Fiziki, 88:6 (2018),  855–859
  19. The correlation between characteristics of macrolocalized plastic deformation and parameters of the electronic structure of metals

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:13 (2018),  75–79
  20. Entropy interpretation of the elastic-plastic strain invariant

    Prikl. Mekh. Tekh. Fiz., 59:6 (2018),  135–142
  21. On numerical estimates of the parameters of localized plasticity during metal tension

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 53,  83–94
  22. Investigation of a plastic deformation inhomogeneity and failure of the corrosion-resistant bimetal under uniaxial tension

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 52,  25–34
  23. Plastic flow instability: Chernov–Lüders bands and the Portevin–Le Chatelier effect

    Zhurnal Tekhnicheskoi Fiziki, 87:3 (2017),  372–377
  24. Chernov–Luders and Portevin–Le Chatelier deformations in active deformable media of different nature

    Prikl. Mekh. Tekh. Fiz., 58:2 (2017),  164–171
  25. Effect of low electrical potentials on the microhardness of metallic materials

    Fizika Tverdogo Tela, 58:1 (2016),  11–13
  26. Regularities in localization of plastic flow upon electrolytic hydrogenation of an iron bcc-alloy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 40:5 (2014),  51–58
  27. Influence of the electric potential on the plastic deformation of conductors

    Fizika Tverdogo Tela, 55:6 (2013),  1047–1051
  28. Character of variation in the microhardness of the (0001) plane of Zn single crystals under the action of electrostatic field and the possible reason for this effect

    Fizika Tverdogo Tela, 55:2 (2013),  313–317
  29. Elastoplastic invariant relation for deformation of solids

    Prikl. Mekh. Tekh. Fiz., 54:1 (2013),  125–133
  30. Evolution of strain localization autowaves in a zirconium alloy and evaluation of plasticity margin in a rolling area

    Prikl. Mekh. Tekh. Fiz., 53:4 (2012),  165–170
  31. Laboratory observation of slow movements in rocks

    Prikl. Mekh. Tekh. Fiz., 53:3 (2012),  184–188
  32. On the localization of plastic strain at the prefailure stage and the possibility of predicting the site and time of ductile rupture

    Zhurnal Tekhnicheskoi Fiziki, 81:2 (2011),  51–57
  33. Tensile plastic strain localization in single crystals of austenite steel electrolytically saturated with hydrogen

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:17 (2011),  9–17
  34. Relationship between Burgers vectors of dislocations and plastic strain localization patterns in compression-strained alkali halide crystals

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 37:16 (2011),  15–21
  35. Plastic flow macrolocalization in aluminum and the Hall–Petch relation

    Zhurnal Tekhnicheskoi Fiziki, 80:9 (2010),  68–74
  36. Dispersion of autowaves in a localized plastic flow

    Zhurnal Tekhnicheskoi Fiziki, 80:7 (2010),  53–59
  37. On inhomogeneous straining in compressed sylvinite

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:11 (2010),  38–45
  38. Localized plastic flow autowaves and the Hall–Petch relation in aluminum

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:5 (2010),  11–19
  39. Specific features of laser cutting of steel sheets and monitoring of sample quality after laser influence

    Prikl. Mekh. Tekh. Fiz., 47:4 (2006),  176–184
  40. Types of localization of plastic deformation and stages of loading diagrams of metallic materials with different crystalline structures

    Prikl. Mekh. Tekh. Fiz., 47:2 (2006),  176–184
  41. Plastic flow localization in commercial zirconium alloys

    Prikl. Mekh. Tekh. Fiz., 44:2 (2003),  132–142
  42. Effect of the grain size on the wavelength of localized strain in aluminum specimens in tension

    Prikl. Mekh. Tekh. Fiz., 43:2 (2002),  166–169
  43. Possibility of evaluation of strength of metals and alloys by a nonintrusive ultrasonic method

    Prikl. Mekh. Tekh. Fiz., 43:1 (2002),  202–204
  44. Heterogeneity of plastic flow of zirconium alloys with a parabolic law of strain hardening

    Prikl. Mekh. Tekh. Fiz., 41:6 (2000),  133–138
  45. The velocity of ultrasound in low-carbon steel deformed at the low yield limit

    Prikl. Mekh. Tekh. Fiz., 41:3 (2000),  197–201
  46. Acoustic evaluation of the endurance of steel specimens and recovery of their serviceability

    Prikl. Mekh. Tekh. Fiz., 39:4 (1998),  180–183
  47. A model of the viscous-brittle transition upon fracture of metals and alloys

    Prikl. Mekh. Tekh. Fiz., 39:3 (1998),  158–162
  48. On the concept of dislocation motion under current

    Fizika Tverdogo Tela, 33:10 (1991),  3027–3032
  49. Ac electric field-stimulated impurity aggregation in $\mathrm{NaCl}:\mathrm{Ca}$ crystals

    Fizika Tverdogo Tela, 28:7 (1986),  2175–2177
  50. $\mathrm{NaCl}$ crystal surface potential change during plastic deformation

    Fizika Tverdogo Tela, 27:7 (1985),  2125–2128
  51. Question of initiation of lead azide detonation in a prepunchthrough electric field

    Fizika Goreniya i Vzryva, 20:3 (1984),  86–89
  52. Screw dislocation mobility restore due to electric field impulse in $\mathrm{NaCl}$ crystals

    Fizika Tverdogo Tela, 25:4 (1983),  966–973
  53. Stress distribution at the tip of a growing crack

    Prikl. Mekh. Tekh. Fiz., 7:3 (1966),  107–111


© Steklov Math. Inst. of RAS, 2026