|
|
Publications in Math-Net.Ru
-
Stress concentration in a layered plane with an elliptical cutout
Chebyshevskii Sb., 24:1 (2023), 253–263
-
Effective defining relations of inelastic composites
Chebyshevskii Sb., 23:3 (2022), 194–206
-
Problems on eigenvalues for ordinary differential equations of the second order with variable coefficients
Chebyshevskii Sb., 22:3 (2021), 353–367
-
The integral formula in problems of the stability of inhomogeneous rods
Chebyshevskii Sb., 22:3 (2021), 345–352
-
Application of integral formulas for solving ordinary differential equations of the second order with variable coefficients
Chebyshevskii Sb., 20:4 (2019), 108–123
-
Formulation of problems in the general Kirchhoff–Love theory of inhomogeneous anisotropic plates
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 3, 43–50
-
Formulation of problems in the Bernoulli–Euler theory of anisotropic inhomogeneous beams
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 1, 43–50
-
Integral formulas of solutions of the basic linear differential equations of mathematical physics with variable factors
Chebyshevskii Sb., 18:3 (2017), 210–234
-
Heat transfer in a nonuniform rod of variable cross section
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 2, 48–54
-
The Bakhvalov–Pobedrya homogenization method in composite mechanics
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 6, 41–46
-
Eigenfrequencies of longitudinal oscillations for an inhomogeneous rod with variable cross section
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1, 31–39
-
Stress concentration in elastic bodies with multiple concentrators
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 6, 45–50
-
Effective constitutive relations for inelastic composites
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 6, 37–42
-
Stability of bars with variable rigidity compressed by a distributed force
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 1, 41–47
-
Stability of bars with variable rigidity
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 6, 65–69
-
Integral formulas in symmetric and asymmetric elasticity
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 6, 52–56
-
Integral formula in dynamical problem on inhomogeneous elasticity
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 2, 62–66
-
An operator method for solving the problem on equilibrium of a nonhomogeneous anisotropic band
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 5, 63–68
-
On the representation of solutions of linear differential equations with variable coefficients
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 6, 68–71
-
The problem on equilibrium of a nonhomogeneous band
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 4, 66–70
-
Stress concentration tensor for the case of $N$-dimensional elastic space with a spherical inclusion
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 2, 78–83
-
To memory of Rudolf Alekseevich Vasin (1937–2019)
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 5, 71–72
-
К семидесятилетию Бориса Eфимовича Победри
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 5, 3–5
© , 2026