RUS  ENG
Full version
PEOPLE

Lisitsa Yurij Trofimovich

Publications in Math-Net.Ru

  1. Theory of spectral sequences. II

    Fundam. Prikl. Mat., 11:5 (2005),  117–149
  2. Theory of Spectral Sequences. I

    Trudy Mat. Inst. Steklova, 247 (2004),  129–150
  3. On (co)homologically locally connected spaces

    Uspekhi Mat. Nauk, 58:6(354) (2003),  153–154
  4. Hurewicz and Whitehead theorems in the strong shape theory

    Dokl. Akad. Nauk SSSR, 283:1 (1985),  38–43
  5. Strong shape theory and Steenrod–Sitnikov homology

    Sibirsk. Mat. Zh., 24:4 (1983),  81–99
  6. Cotelescopes and the Kuratowski–Dugundji theorem in shape theory

    Dokl. Akad. Nauk SSSR, 265:5 (1982),  1064–1068
  7. Duality theorems and dual categories of shapes and coshapes

    Dokl. Akad. Nauk SSSR, 263:3 (1982),  532–536
  8. Strong coshape theory

    Uspekhi Mat. Nauk, 35:3(213) (1980),  197–201
  9. Obstructions to the extension of mappings

    Sibirsk. Mat. Zh., 20:2 (1979),  337–344
  10. On the exactness of the spectral homotopy group sequence in shape theory

    Dokl. Akad. Nauk SSSR, 236:1 (1977),  23–26
  11. The Hopf classification theorem in shape theory

    Sibirsk. Mat. Zh., 18:1 (1977),  143–160
  12. Hopf’s classification theorem in the theory of shapes

    Dokl. Akad. Nauk SSSR, 223:5 (1975),  1056–1059
  13. Extension of sequences that approximate a given compactum

    Tr. Mosk. Mat. Obs., 32 (1975),  93–118
  14. Extension of sequences of mappings that approximate a given compactum

    Dokl. Akad. Nauk SSSR, 212:4 (1973),  806–809
  15. Extension of continuous mappings, and a factorization theorem

    Sibirsk. Mat. Zh., 14:1 (1973),  128–139
  16. The extension of mappings and a factorization theorem

    Dokl. Akad. Nauk SSSR, 207:5 (1972),  1042–1043
  17. On spaces that are connected and locally connected in all dimensions

    Dokl. Akad. Nauk SSSR, 205:4 (1972),  777–779


© Steklov Math. Inst. of RAS, 2026