RUS  ENG
Full version
PEOPLE

Kolotov Igor Ivanovich

Publications in Math-Net.Ru

  1. On variational settings of the inverse coefficient problems in magnetic hydrodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 65:7 (2025),  1265–1276
  2. On the uniqueness of discrete gravity and magnetic potentials

    Zh. Vychisl. Mat. Mat. Fiz., 65:3 (2025),  376–389
  3. On the uniqueness of the finite-difference analogues of the fundamental solution of the heat equation and the wave equation in discrete potential theory

    Zh. Vychisl. Mat. Mat. Fiz., 64:12 (2024),  2378–2389
  4. Erratum to: On the construction of an optimal network of observation points when solving inverse linear problems of gravimetry and magnetometry

    Zh. Vychisl. Mat. Mat. Fiz., 64:11 (2024),  2736
  5. On the uniqueness of determining the mesh fundamental solution of Laplace’s equation in the theory of discrete potential

    Zh. Vychisl. Mat. Mat. Fiz., 64:7 (2024),  1253–1267
  6. On the simultaneous determination of the distribution density of sources equivalent in the external field and the spectrum of the useful signal

    Zh. Vychisl. Mat. Mat. Fiz., 64:5 (2024),  867–880
  7. On the construction of an optimal network of observation points when solving inverse linear problems of gravimetry and magnetometry

    Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024),  403–414
  8. On the uniqueness of solution to systems of linear algebraic equations to which the inverse problems of gravimetry and magnetometry are reduced: A regional variant

    Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023),  1446–1457
  9. On the uniqueness of solutions to systems of linear algebraic equations resulting from the reduction of linear inverse problems of gravimetry and magnetometry: a local case

    Zh. Vychisl. Mat. Mat. Fiz., 63:8 (2023),  1317–1331
  10. Reconstruction of magnetic susceptibility using full magnetic gradient data

    Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020),  1027–1034
  11. On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study

    Mat. Zametki, 105:5 (2019),  708–723


© Steklov Math. Inst. of RAS, 2026