RUS  ENG
Full version
PEOPLE

Babkin Vyacheslav Stepanovich

Publications in Math-Net.Ru

  1. Classification of similarity criteria in combustion theory and the problem of auto-ignition of the combustible mixture under compression

    Fizika Goreniya i Vzryva, 54:3 (2018),  25–35
  2. Numerical investigation of the distribution of oxygen atoms in syngas combustion products

    Fizika Goreniya i Vzryva, 53:6 (2017),  3–9
  3. Numerical study of laminar rich hydrogen–air flames with added ethanol

    Fizika Goreniya i Vzryva, 52:3 (2016),  3–7
  4. Validation of a kinetic scheme for numerical investigation of hydrogen–methanol–air flames

    Fizika Goreniya i Vzryva, 52:2 (2016),  18–20
  5. Numerical study of the distribution of oxygen atoms in the combustion products of CO/H2/air flames

    Mendeleev Commun., 26:2 (2016),  163–165
  6. Numerical study of the combustion chemistry of fuel-rich mixtures of formaldehyde and air

    Fizika Goreniya i Vzryva, 51:6 (2015),  3–11
  7. Superadiabatic temperature phenomenon in the combustion processes due to a competition between chemical reactions

    Fizika Goreniya i Vzryva, 51:2 (2015),  14–22
  8. Distribution of O atoms from CH2O molecules in the combustion products of formaldehyde

    Mendeleev Commun., 25:2 (2015),  157–158
  9. Effect of initial temperature on the velocity of flame spread over a fuel film on a metal substrate

    Fizika Goreniya i Vzryva, 48:5 (2012),  87–96
  10. Fast gas combustion in systems with hydraulic resistance

    Fizika Goreniya i Vzryva, 48:3 (2012),  35–45
  11. Numerical Characteristics of the Low-Temperature Oxidation of Dimethyl Ether with Air

    Mendeleev Commun., 22:6 (2012),  338–339
  12. Control of the deflagration-to-detonation transition in systems with resistance

    Fizika Goreniya i Vzryva, 47:5 (2011),  75–84
  13. Gas combustion in narrow single channels

    Fizika Goreniya i Vzryva, 46:2 (2010),  42–49
  14. Effect of superadiabatic temperatures in the autoignition of dimethyl ether mixtures

    Mendeleev Commun., 19:5 (2009),  290–291
  15. Stabilized gas combustion wave in an inert porous medium

    Fizika Goreniya i Vzryva, 44:5 (2008),  8–15
  16. Tracer method in numerical simulation of combustion processes

    Fizika Goreniya i Vzryva, 43:6 (2007),  3–12
  17. Free-convective regime of flame spread over a fuel film on a substrate

    Fizika Goreniya i Vzryva, 43:5 (2007),  21–30
  18. Selective oxidation of hydrogen in rich hydrogen–methane–air flames

    Fizika Goreniya i Vzryva, 43:5 (2007),  3–11
  19. Role of atomic hydrogen diffusion in a hydrogen flame

    Fizika Goreniya i Vzryva, 43:2 (2007),  3–9
  20. Chemical reactions in the low-temperature zone of a laminar rich propane–air flame

    Fizika Goreniya i Vzryva, 42:5 (2006),  14–19
  21. Effect of propylene additives on rich hydrogen–air flames

    Mendeleev Commun., 16:2 (2006),  104–105
  22. Selective diffusion during flame propagation and quenching in a porous medium

    Fizika Goreniya i Vzryva, 41:4 (2005),  50–59
  23. On the nature of superadiabatic temperatures in premixed rich hydrocarbon flames

    Fizika Goreniya i Vzryva, 40:1 (2004),  38–41
  24. Interaction of two diffusion flames spreading along a metal substrate wetted with different fuels

    Fizika Goreniya i Vzryva, 39:6 (2003),  28–37
  25. Energy-concentration phenomenon in combustion waves

    Fizika Goreniya i Vzryva, 38:1 (2002),  3–11
  26. Thermal interaction of two flame fronts propagating in channels with opposing gas flows

    Fizika Goreniya i Vzryva, 37:5 (2001),  3–11
  27. Flame propagation in a variable–section channel with gas filtration

    Fizika Goreniya i Vzryva, 37:1 (2001),  16–24
  28. Diffusion combustion of a liquid fuel film on a metal substrate

    Fizika Goreniya i Vzryva, 36:5 (2000),  12–21
  29. Flame spread over liquid fuel films on metallic substrates

    Fizika Goreniya i Vzryva, 36:3 (2000),  25–30
  30. Propagation of spherical gas filtration combustion waves in inert porous media

    Fizika Goreniya i Vzryva, 35:1 (1999),  60–66
  31. Behavior of flames propagating over liquid films with metallic substrates

    Fizika Goreniya i Vzryva, 34:3 (1998),  15–18
  32. Characteristics of stationary spherical waves of gas combustion in inert porous media

    Fizika Goreniya i Vzryva, 34:2 (1998),  9–19
  33. Self-ignition ahead of the flame front in piston spark-ignition engines

    Fizika Goreniya i Vzryva, 33:6 (1997),  3–13
  34. Flame propagation in porous media wetted with fuel

    Fizika Goreniya i Vzryva, 33:3 (1997),  76–85
  35. Unsteady-state effects upon gas combustion in closed vessels with an inert porous medium

    Fizika Goreniya i Vzryva, 33:1 (1997),  24–32
  36. Scale modeling of gas explosions in closed vessels

    Fizika Goreniya i Vzryva, 32:6 (1996),  20–28
  37. Thermal stability of distorted gas flame in porous media

    Fizika Goreniya i Vzryva, 30:6 (1994),  39–42
  38. Combustion wave instability in the filtration combustion of gases

    Fizika Goreniya i Vzryva, 30:3 (1994),  49–54
  39. Vortex combustion of bengal candle

    Fizika Goreniya i Vzryva, 29:5 (1993),  103–104
  40. Thermal explosion in an inert porous medium

    Fizika Goreniya i Vzryva, 28:4 (1992),  3–10
  41. Normal flame velocity of propane-and-air mixtures at high pressures and temperatures

    Fizika Goreniya i Vzryva, 25:1 (1989),  57–64
  42. Pressure rise in a closed container during the combustion of a localized gas volume

    Fizika Goreniya i Vzryva, 24:5 (1988),  15–20
  43. Experimental studies of hydrocombustible foam

    Fizika Goreniya i Vzryva, 24:4 (1988),  35–38
  44. Conbustion of gas in connected vessels

    Fizika Goreniya i Vzryva, 24:2 (1988),  3–12
  45. Seepage gas combustion

    Fizika Goreniya i Vzryva, 23:5 (1987),  27–44
  46. Steady periodic structure of a flame with a finite cell amplitude

    Fizika Goreniya i Vzryva, 23:2 (1987),  49–57
  47. Velocity and temperature fields in the combustion of rotating gas in a closed vessel

    Fizika Goreniya i Vzryva, 22:3 (1986),  50–59
  48. Gas combustion in closed systems of variable volume

    Fizika Goreniya i Vzryva, 21:6 (1985),  50–57
  49. Combustion of local gas volume in closed vessel

    Fizika Goreniya i Vzryva, 21:6 (1985),  43–50
  50. Gas combustion in a vessel with a highly porous inert medium

    Fizika Goreniya i Vzryva, 21:5 (1985),  17–22
  51. Thermal structure of an in situ gas combustion wave

    Fizika Goreniya i Vzryva, 21:2 (1985),  19–25
  52. Theory of filtrational combustion of gases

    Fizika Goreniya i Vzryva, 20:6 (1984),  3–13
  53. Effect of heat losses on propagation of stationary waves in filtration combustion of gases

    Fizika Goreniya i Vzryva, 20:1 (1984),  19–26
  54. Filtration combustion of gases

    Fizika Goreniya i Vzryva, 19:2 (1983),  17–26
  55. Flame zone in gas combustion in an inert porous medium

    Fizika Goreniya i Vzryva, 18:6 (1982),  20–23
  56. Dynamics of gas combustion in closed vessels with various laws of flame-surface variation

    Fizika Goreniya i Vzryva, 18:6 (1982),  14–20
  57. Flame extinction in rotating gas

    Fizika Goreniya i Vzryva, 18:3 (1982),  17–20
  58. Effect of tube diameter on homogeneous gas flame propagation limits

    Fizika Goreniya i Vzryva, 18:2 (1982),  44–52
  59. Self-ignition of gas in front of the flame front in a closed vessel

    Fizika Goreniya i Vzryva, 18:1 (1982),  3–8
  60. Inhibition of hydrogen-air flame at high pressures

    Fizika Goreniya i Vzryva, 17:5 (1981),  8–13
  61. Effect of pressure on propagation limits of homogeneous gas flames

    Fizika Goreniya i Vzryva, 17:3 (1981),  38–45
  62. Effect of acceleration on the limits of propagation of homogeneous gas flames

    Fizika Goreniya i Vzryva, 17:1 (1981),  47–52
  63. Effect of thermodynamic and kinetic parameters on gas-combustion dynamics in a spherical vessel

    Fizika Goreniya i Vzryva, 15:6 (1979),  14–20
  64. Synergy in flame-propagation processes

    Fizika Goreniya i Vzryva, 14:6 (1978),  26–28
  65. Limits of the propagation of a wave for single-component oxidizers

    Fizika Goreniya i Vzryva, 13:3 (1977),  465–467
  66. Dynamics of turbulent gas combustion in a closed volume

    Fizika Goreniya i Vzryva, 13:3 (1977),  354–358
  67. Initial stage of gas combustion in a closed volume

    Fizika Goreniya i Vzryva, 13:1 (1977),  24–29
  68. Intermediate product lifetimes in a reacting hydrogen-air mixture

    Fizika Goreniya i Vzryva, 12:4 (1976),  530–535
  69. Convective limit to flame propagation in a restricted volume

    Fizika Goreniya i Vzryva, 12:2 (1976),  222–229
  70. Chain ignition of hydrogen at high degrees of burnup

    Fizika Goreniya i Vzryva, 11:5 (1975),  684–687
  71. Study of the structure of supersonic flows by absorption of laser radiation

    Fizika Goreniya i Vzryva, 11:4 (1975),  662–665
  72. Causes of deviations from Le Chatelier's principle for flame-propagation limits

    Fizika Goreniya i Vzryva, 11:1 (1975),  135–138
  73. Chain explosion in the oxidation of hydrogen for intense degrees of burn-up

    Fizika Goreniya i Vzryva, 10:3 (1974),  372–375
  74. Convective mechanism for quenching the flame of a Bunsen burner

    Fizika Goreniya i Vzryva, 9:5 (1973),  758–761
  75. Deviations from the Le Chatelier rule for the limits of the propagation of a flame

    Fizika Goreniya i Vzryva, 9:4 (1973),  605–607
  76. Decomposition of formaldehyde under adiabatic compression in the presence of oxygen

    Fizika Goreniya i Vzryva, 9:3 (1973),  416–420
  77. Convective mechanism of extinguishing the flame of volatile explosives in a field of body forces

    Fizika Goreniya i Vzryva, 8:4 (1972),  597–599
  78. Effect of water vapor on the normal burning velocity of a methane-air mixture at high pressures

    Fizika Goreniya i Vzryva, 7:3 (1971),  392–395
  79. On the mechanism of laminar flame propagation at high pressures

    Fizika Goreniya i Vzryva, 7:2 (1971),  241–245
  80. Analysis of equations for determining the normal burning velocity by the constant-volume-bomb method

    Fizika Goreniya i Vzryva, 5:1 (1969),  84–93
  81. Determination of burning velocity from the pressure record in a constant-volume bomb

    Fizika Goreniya i Vzryva, 3:3 (1967),  361–370
  82. Equations for determining normal flame velocity in a constant-volume spherical bomb

    Fizika Goreniya i Vzryva, 3:2 (1967),  268–275
  83. Study of normal burning velocity in methane-air mixtures at high pressures

    Fizika Goreniya i Vzryva, 2:3 (1966),  77–86
  84. Effect of pressure on normal flame velocity investigated by the initial-section method in a constant-volume vessel

    Fizika Goreniya i Vzryva, 2:2 (1966),  52–60
  85. Об энергетических потерях при взрывах в сферической бомбе

    Fizika Goreniya i Vzryva, 1:2 (1965),  114–117
  86. Влияние давления на нормальную скорость пламени метано-воздушной смеси

    Prikl. Mekh. Tekh. Fiz., 5:3 (1964),  145–149
  87. Об измерении скорости распространения пламени методом бомбы постоянного объема

    Prikl. Mekh. Tekh. Fiz., 4:6 (1963),  128–131
  88. The influence of curvature on the rate of propagation of a laminar flame in a poor propane-air mixture

    Dokl. Akad. Nauk SSSR, 146:3 (1962),  625–627
  89. The mechanism of the predetonation propagation of flame in rough tubes

    Dokl. Akad. Nauk SSSR, 131:3 (1960),  591–592
  90. Возникновение детонации в газах в шероховатых трубах

    Prikl. Mekh. Tekh. Fiz., 1:3 (1960),  165–174


© Steklov Math. Inst. of RAS, 2026