RUS  ENG
Full version
PEOPLE

Pavlov Maxim Valentinovich

Publications in Math-Net.Ru

  1. Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies

    Trudy Mat. Inst. Steklova, 325 (2024),  238–243
  2. Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$

    TMF, 204:3 (2020),  332–354
  3. Two-photon propagation of light and the modified Liouville equation

    TMF, 204:2 (2020),  297–304
  4. Integrability of exceptional hydrodynamic-type systems

    Trudy Mat. Inst. Steklova, 302 (2018),  343–353
  5. Löwner evolution and finite-dimensional reductions of integrable systems

    TMF, 181:1 (2014),  155–172
  6. Generalized hydrodynamic reductions of the kinetic equation for a soliton gas

    TMF, 171:2 (2012),  294–302
  7. Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations

    Funktsional. Anal. i Prilozhen., 45:4 (2011),  49–64
  8. On a Nonlocal Ostrovsky–Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability

    SIGMA, 6 (2010), 002, 13 pp.
  9. On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems

    SIGMA, 5 (2009), 011, 10 pp.
  10. Classification of integrable Vlasov-type equations

    TMF, 154:2 (2008),  249–260
  11. Integrability of the Egorov systems of hydrodynamic type

    TMF, 150:2 (2007),  263–285
  12. Transformations of integrable hydrodynamic chains and their hydrodynamic reductions

    Fundam. Prikl. Mat., 12:7 (2006),  167–175
  13. Classification of Integrable $(2+1)$-Dimensional Quasilinear Hierarchies

    TMF, 144:1 (2005),  35–43
  14. The description of pairs of compatible first-order differential geometric poisson brackets

    TMF, 142:2 (2005),  293–309
  15. The Boussinesq equation and Miura type transformations

    Fundam. Prikl. Mat., 10:1 (2004),  175–182
  16. Classifying Integrable Egoroff Hydrodynamic Chains

    TMF, 138:1 (2004),  55–70
  17. On initial value problem in theory of the second order differential equations

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 2,  51–58
  18. Egorov Hydrodynamic Chains, the Chazy Equation, and $SL(2,\mathbb{C})$

    Funktsional. Anal. i Prilozhen., 37:4 (2003),  13–26
  19. Tri-Hamiltonian Structures of Egorov Systems of Hydrodynamic Type

    Funktsional. Anal. i Prilozhen., 37:1 (2003),  38–54
  20. New integrable $(2+1)$-equations of hydrodynamic type

    Uspekhi Mat. Nauk, 58:2(350) (2003),  171–172
  21. Tzitzéica Equation and Proliferation of Nonlinear Integrable Equations

    TMF, 131:1 (2002),  126–134
  22. The Calogero Equation and Liouville-Type Equations

    TMF, 128:1 (2001),  109–115
  23. Invariant Integrability Criterion for Equations of Hydrodynamic Type

    Funktsional. Anal. i Prilozhen., 30:1 (1996),  18–29
  24. On Whitham's Averaging Method

    Funktsional. Anal. i Prilozhen., 29:1 (1995),  7–24
  25. Conservation of the ‘forms’ of Hamiltonian structures upon linear substitution for independent variables

    Mat. Zametki, 57:5 (1995),  704–711
  26. Hamiltonian formalism of multidimensional systems of hydrodynamic type having non-degenerate Lagrangian structure

    Uspekhi Mat. Nauk, 50:3(303) (1995),  163–164
  27. Exact integrability of a system of Benney equations

    Dokl. Akad. Nauk, 339:3 (1994),  311–313
  28. Dual Lagrangian representation of the KdV equation and the general solution of the Whitham equations

    Dokl. Akad. Nauk, 339:2 (1994),  157–161
  29. Elliptic coordinates and multi-Hamiltonian structures of hydrodynamic-type systems

    Dokl. Akad. Nauk, 339:1 (1994),  21–23
  30. Whitham's averaging method and the Korteweg–de Vries hierarchy

    Dokl. Akad. Nauk, 338:3 (1994),  317–319
  31. Multi-Hamiltonian structures of the Whitham equations

    Dokl. Akad. Nauk, 338:2 (1994),  165–167
  32. Local Hamiltonian structures of Benney's system

    Dokl. Akad. Nauk, 338:1 (1994),  33–34
  33. The Hamiltonian structure of the Whitham equations

    Uspekhi Mat. Nauk, 49:1(295) (1994),  219–220
  34. Discrete symmetry and local Hamiltonian structures of systems of hydrodynamical type

    Uspekhi Mat. Nauk, 48:6(294) (1993),  167–168
  35. On conservation laws of Benney equations

    Uspekhi Mat. Nauk, 46:4(280) (1991),  169–170
  36. Hamiltonian formalism of weakly nonlinear hydrodynamic systems

    TMF, 73:2 (1987),  316–320
  37. Nonlinear Schrödinger equation and the bogolyubov-whitham method of averaging

    TMF, 71:3 (1987),  351–356


© Steklov Math. Inst. of RAS, 2026