RUS  ENG
Full version
PEOPLE

Livshits Evgenii Davidovich

Publications in Math-Net.Ru

  1. On Uniform Approximation on Subsets

    Mat. Zametki, 98:5 (2015),  797–800
  2. Sparse approximation and recovery by greedy algorithms

    IEEE Trans. Information Theory, 60:7 (2014),  3989–4000
  3. A weak-type inequality for uniformly bounded trigonometric polynomials

    Trudy Mat. Inst. Steklova, 280 (2013),  215–226
  4. On the efficiency of the Orthogonal Matching Pursuit in compressed sensing

    Mat. Sb., 203:2 (2012),  33–44
  5. On Greedy Algorithms for Dictionaries with Bounded Cumulative Coherence

    Mat. Zametki, 87:5 (2010),  792–795
  6. The convergence of the greedy algorithm with respect to the Haar system in the space $L_p(0,1)$

    Mat. Sb., 201:2 (2010),  95–130
  7. Realizability of greedy algorithms

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  228–236
  8. Lower bounds for the rate of convergence of greedy algorithms

    Izv. RAN. Ser. Mat., 73:6 (2009),  125–144
  9. On a Greedy Algorithm in the Space $L_p[0,1]$

    Mat. Zametki, 85:5 (2009),  788–791
  10. On Adaptive Estimators in Statistical Learning Theory

    Trudy Mat. Inst. Steklova, 260 (2008),  193–201
  11. On $n$-Term Approximation with Positive Coefficients

    Mat. Zametki, 82:3 (2007),  373–382
  12. Optimality of the greedy algorithm for some function classes

    Mat. Sb., 198:5 (2007),  95–114
  13. On the recursive greedy algorithm

    Izv. RAN. Ser. Mat., 70:1 (2006),  95–116
  14. On Almost-Best Approximation by Piecewise Polynomial Functions in the Space $C[0,1]$

    Mat. Zametki, 78:4 (2005),  629–633
  15. Generalized Approximate Weak Greedy Algorithms

    Mat. Zametki, 78:2 (2005),  186–201
  16. Rate of Convergence of Pure Greedy Algorithms

    Mat. Zametki, 76:4 (2004),  539–552
  17. Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$

    Izv. RAN. Ser. Mat., 67:1 (2003),  99–130
  18. Convergence of Greedy Algorithms in Banach Spaces

    Mat. Zametki, 73:3 (2003),  371–389
  19. Continuous Almost Best Approximations in $C[0,1]$

    Funktsional. Anal. i Prilozhen., 35:1 (2001),  85–87
  20. On Convergence of Weak Greedy Algorithms

    Trudy Mat. Inst. Steklova, 232 (2001),  236–247


© Steklov Math. Inst. of RAS, 2026