RUS  ENG
Full version
PEOPLE

Laurinčikas Antanas P

Publications in Math-Net.Ru

  1. Joint functional independence of the Riemann zeta-function

    Indian J. Pure Appl. Math., 56 (2025),  1523–1528
  2. On the approximation by Mellin transform of the Riemann zeta-function

    Axioms, 12:6 (2023),  520–19
  3. Joint approximation of analytic functions by shifts of the Riemann zeta-function twisted by the Gram function

    Carpathian J. Math., 39:1 (2023),  175–187
  4. On Joint Universality of the Riemann and Hurwitz Zeta-Functions

    Mat. Zametki, 111:4 (2022),  551–560
  5. On the universality of the zeta functions of certain cusp forms

    Mat. Sb., 213:5 (2022),  88–100
  6. Joint weighted universality of the Hurwitz zeta-functions

    Algebra i Analiz, 33:3 (2021),  111–128
  7. Gram points in the theory of zeta-functions of certain cusp forms

    J. Math. Anal. Appl., 504:1 (2021),  125396–18
  8. On Joint Universality of the Riemann Zeta-Function

    Mat. Zametki, 110:2 (2021),  221–233
  9. On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series

    Mat. Zametki, 109:6 (2021),  832–841
  10. The universality of an absolutely convergent series on short intervals

    Sibirsk. Mat. Zh., 62:6 (2021),  1330–1338
  11. The universality of some compositions on short intervals

    Sibirsk. Mat. Zh., 62:3 (2021),  555–562
  12. On the Hurwitz Zeta-Function with Algebraic Irrational Parameter. II

    Trudy Mat. Inst. Steklova, 314 (2021),  134–144
  13. A new application of the Gram points. II

    Aequationes Math., 94 (2020),  1171–1187
  14. On the Functional Independence of Zeta-Functions of Certain Cusp Forms

    Mat. Zametki, 107:4 (2020),  550–560
  15. On a Generalization of Voronin's Theorem

    Mat. Zametki, 107:3 (2020),  400–411
  16. Joint universality of zeta functions with periodic coefficients. ii

    Sibirsk. Mat. Zh., 61:5 (2020),  1064–1076
  17. A new application of the Gram points

    Aequationes Math., 93:5 (2019),  859–873
  18. On the Hurwitz Zeta Functions with Algebraic Irrational Parameter

    Mat. Zametki, 105:2 (2019),  179–186
  19. Universality of $L$-Dirichlet functions and nontrivial zeros of the Riemann zeta-function

    Mat. Sb., 210:12 (2019),  98–119
  20. On the mishou theorem with an algebraic parameter

    Sibirsk. Mat. Zh., 60:6 (2019),  1379–1388
  21. Discrete universality of the Riemann zeta-function and uniform distribution modulo 1

    Algebra i Analiz, 30:1 (2018),  139–150
  22. On joint value distribution of Hurwitz zeta-functions

    Chebyshevskii Sb., 19:3 (2018),  219–230
  23. Joint discrete universality for Lerch zeta-functions

    Chebyshevskii Sb., 19:1 (2018),  138–151
  24. Joint value distribution theorems for the Riemann and Hurwitz zeta-functions

    Mosc. Math. J., 18:2 (2018),  349–366
  25. Universality of the periodic Hurwitz zeta-function with rational parameter

    Sibirsk. Mat. Zh., 59:5 (2018),  1128–1135
  26. A Remark on the Distribution of the Values of the Riemann Zeta Function

    Mat. Zametki, 102:2 (2017),  247–254
  27. Discrete universality in the Selberg class

    Trudy Mat. Inst. Steklova, 299 (2017),  155–169
  28. A discrete version of the Mishou theorem. II

    Trudy Mat. Inst. Steklova, 296 (2017),  181–191
  29. Modification of the Mishou theorem

    Chebyshevskii Sb., 17:3 (2016),  135–147
  30. A discrete universality theorem for periodic Hurwitz zeta-functions

    Chebyshevskii Sb., 17:1 (2016),  148–159
  31. An Elliott-Type Theorem for Twists of $L$-Functions of Elliptic Curves

    Mat. Zametki, 99:1 (2016),  78–88
  32. Universality theorems for zeta-functions with periodic coefficients

    Sibirsk. Mat. Zh., 57:2 (2016),  420–431
  33. Value distribution of twists of $L$-functions of elliptic curves

    Sovrem. Probl. Mat., 23 (2016),  79–86
  34. Joint disctrete universality of Dirichlet $L$-functions. II

    Chebyshevskii Sb., 16:1 (2015),  205–218
  35. On the zeros of some functions related to periodic zeta-functions

    Chebyshevskii Sb., 15:1 (2014),  121–130
  36. Sharpening of the Universality Inequality

    Mat. Zametki, 96:6 (2014),  905–910
  37. Joint discrete universality of Hurwitz zeta functions

    Mat. Sb., 205:11 (2014),  75–94
  38. The joint universality of Dirichlet $L$-functions and Lerch zeta-functions

    Sibirsk. Mat. Zh., 55:4 (2014),  790–805
  39. The Atkinson type formula for the periodic zeta-function

    Chebyshevskii Sb., 14:2 (2013),  180–199
  40. On universality of certain zeta-functions

    Izv. Saratov Univ. Math. Mech. Inform., 13:4(2) (2013),  67–72
  41. On zeros of some analytic functions related to the Hurwitz zeta-function

    Chebyshevskii Sb., 13:2 (2012),  86–90
  42. Universality of composite functions of periodic zeta functions

    Mat. Sb., 203:11 (2012),  105–120
  43. On universality of the Lerch zeta-function

    Trudy Mat. Inst. Steklova, 276 (2012),  173–181
  44. Limit theorems for the Estermann zeta function. III

    Chebyshevskii Sb., 12:4 (2011),  97–108
  45. Joint universality for zeta-functions of different types

    Chebyshevskii Sb., 12:2 (2011),  192–203
  46. Universality theorems for composite functions of zeta-functions

    Chebyshevskii Sb., 12:2 (2011),  182–191
  47. On twisted $L$-functions of elliptic curves

    Chebyshevskii Sb., 12:2 (2011),  171–181
  48. On joint universality of Dirichlet $L$-functions

    Chebyshevskii Sb., 12:1 (2011),  124–139
  49. A Growth Estimate for the Mellin Transform of the Riemann Zeta Function

    Mat. Zametki, 89:1 (2011),  70–81
  50. A discrete limit theorem for the Mellin transforms of the Riemann zeta-function

    Chebyshevskii Sb., 11:1 (2010),  31–46
  51. Some value-distribution theorems for periodic Hurwitz zeta-functions

    Fundam. Prikl. Mat., 16:5 (2010),  79–92
  52. Joint universality of zeta-functions with periodic coefficients

    Izv. RAN. Ser. Mat., 74:3 (2010),  79–102
  53. On the Joint Universality of Lerch Zeta Functions

    Mat. Zametki, 88:3 (2010),  428–437
  54. Limit theorems for the Mellin transform of the fourth power of the Riemann zeta-function

    Sibirsk. Mat. Zh., 51:1 (2010),  110–127
  55. The joint distribution of multiplicative functions

    Chebyshevskii Sb., 10:1 (2009),  41–58
  56. On the Joint Universality of Periodic Zeta Functions

    Mat. Zametki, 85:1 (2009),  54–64
  57. Discrete limit theorems for Estermann zeta-functions. II

    Algebra Discrete Math., 2008, no. 3,  69–83
  58. Joint universality for periodic Hurwitz zeta-functions

    Izv. RAN. Ser. Mat., 72:4 (2008),  121–140
  59. Functional Independence of Periodic Hurwitz Zeta Functions

    Mat. Zametki, 83:1 (2008),  69–76
  60. Discrete universality of the $L$-functions of elliptic curves

    Sibirsk. Mat. Zh., 49:4 (2008),  768–785
  61. Discrete limit theorems for Estermann zeta-functions. I

    Algebra Discrete Math., 2007, no. 4,  84–101
  62. The joint universality for periodic zeta-functions

    Chebyshevskii Sb., 8:2 (2007),  162–174
  63. Limit theorems for the Estermann zeta-function. IV

    Chebyshevskii Sb., 8:2 (2007),  148–161
  64. Voronin-type theorem for periodic Hurwitz zeta-functions

    Mat. Sb., 198:2 (2007),  91–102
  65. A general discrete limit theorem in the space of analytic functions for the Matsumoto zeta-function

    Teor. Veroyatnost. i Primenen., 52:3 (2007),  594–603
  66. Value distribution of general Dirichlet series. VIII

    Algebra Discrete Math., 2006, no. 4,  40–56
  67. Remarks on the universality of the periodic zeta function

    Mat. Zametki, 80:4 (2006),  561–568
  68. Joint universality of general Dirichlet series

    Izv. RAN. Ser. Mat., 69:1 (2005),  133–144
  69. Discrete Universality of $L$-Functions for New Forms

    Mat. Zametki, 78:4 (2005),  595–603
  70. A limit theorem for the Hurwitz zeta-function with algebraic irrational parameter

    Zap. Nauchn. Sem. POMI, 322 (2005),  125–134
  71. The universality of $L$-functions associated with new forms

    Izv. RAN. Ser. Mat., 67:1 (2003),  83–98
  72. An Approximate Functional Equation for the Lerch Zeta Function

    Mat. Zametki, 74:4 (2003),  494–501
  73. A limit theorem with weight for the Lerch zeta function in the space of analytic functions

    Trudy Mat. Inst. Steklova, 218 (1997),  109–121
  74. Limit theorems for Dirichlet $L$-functions

    Trudy Mat. Inst. Steklov., 207 (1994),  235–249
  75. A limit theorem for the Riemann Zeta-function close to the critical line. II

    Mat. Sb., 180:6 (1989),  733–749
  76. A limit theorem for the Riemann zeta-function close to the critical line

    Mat. Sb. (N.S.), 135(177):1 (1988),  3–11
  77. Moments of the Riemann zeta-function on the critical line

    Mat. Zametki, 39:4 (1986),  483–493
  78. A limit theorem for Dirichlet $L$-series

    Mat. Zametki, 25:4 (1979),  481–485

  79. Vasily Ivanovich Bernik (to the 75th anniversary)

    Chebyshevskii Sb., 23:1 (2022),  6–9
  80. Evgeny Vladimirovich Podsypanin

    Chebyshevskii Sb., 21:4 (2020),  425–426
  81. Vasily Ivanovich Bernik (on his seventieth)

    Chebyshevskii Sb., 17:4 (2016),  203–210


© Steklov Math. Inst. of RAS, 2026