RUS  ENG
Full version
PEOPLE

Changa Maris Evgen'evich

Publications in Math-Net.Ru

  1. On solving the Pell equation with right-hand side $\pm2$ using continued fractions

    Mat. Zametki, 117:4 (2025),  609–619
  2. On the asymptotic behavior of some sums involving the number of prime divisors function

    Chebyshevskii Sb., 21:3 (2020),  186–195
  3. New Estimate for Kloosterman Sums with Primes

    Mat. Zametki, 108:1 (2020),  94–101
  4. On integers whose number of prime divisors belongs to a given residue class

    Izv. RAN. Ser. Mat., 83:1 (2019),  192–202
  5. On a sum of Legendre symbols

    Uspekhi Mat. Nauk, 73:5(443) (2018),  183–184
  6. A problem involving integers all of whose prime divisors belong to given arithmetic progressions

    Uspekhi Mat. Nauk, 71:4(430) (2016),  191–192
  7. On the Quantity of Numbers of Special Form Depending on the Parity of the Number of Their Different Prime Divisors

    Mat. Zametki, 97:6 (2015),  930–935
  8. The method of trigonometric sums

    Lekts. Kursy NOC, 13 (2009),  3–46
  9. Method of complex integration

    Lekts. Kursy NOC, 2 (2006),  3–56
  10. On sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions

    Izv. RAN. Ser. Mat., 69:2 (2005),  205–220
  11. On a function-theoretic inequality

    Uspekhi Mat. Nauk, 60:3(363) (2005),  181–182
  12. Lower Bounds for the Riemann Zeta Function on the Critical Line

    Mat. Zametki, 76:6 (2004),  922–927
  13. On Zeros of Real Trigonometric Sums

    Mat. Zametki, 76:5 (2004),  792–797
  14. Numbers whose prime divisors lie in special intervals

    Izv. RAN. Ser. Mat., 67:4 (2003),  213–224
  15. Primes in Special Intervals and Additive Problems with Such Numbers

    Mat. Zametki, 73:3 (2003),  423–436
  16. On the number of primes yielding square-free sums with given numbers

    Uspekhi Mat. Nauk, 58:3(351) (2003),  197–198
  17. Summation of multiplicative functions

    Uspekhi Mat. Nauk, 57:6(348) (2002),  197–198
  18. Decomposition of an exponential into an infinite product

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 5,  46–49

  19. From the history of the department of number theory: to the 150-th anniversary of Moscow State Pedagogical University

    Chebyshevskii Sb., 23:3 (2022),  282–303
  20. Scientific Achievements of Anatolii Alekseevich Karatsuba

    Sovrem. Probl. Mat., 16 (2012),  7–30


© Steklov Math. Inst. of RAS, 2026