|
|
Publications in Math-Net.Ru
-
Lie algebras of projective motions of $h$-spaces $H_{32,2}$ of type $\{32\}$
Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 11, 3–12
-
Lie algebras of projective motions of rigid $h$-spaces $H_ {32,3}$ of the type $\{32\}$
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 7, 37–46
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. V. Lie algebras of projective and affine motions of $h$-spaces $H_{221}$ of type $\{221\}$
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216 (2022), 12–28
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. IV. Structure of projective and affine Lie algebras of five-dimensional rigid $h$-spaces
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215 (2022), 18–31
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. III. Curvature forms of five-dimensional rigid $h$-spaces in a skew-normal frame
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 214 (2022), 3–20
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. II. Integration of the Eisenhart equations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022), 10–37
-
Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212 (2022), 10–29
-
Lie algebras of projective motions of five-dimensional $h$-spaces $H_{221}$ of type $\{221\}$
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 12, 9–22
-
On the properties of the projective Lie algebras of rigid $h$-spaces $H_{32}$ of the type $\{32\}$
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 162:2 (2020), 111–119
-
Projective group properties of $h$-spaces of type $\{221\}$
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 10, 87–93
-
On projective motions of five-dimensional spaces of special form
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 5, 97–102
© , 2026