RUS  ENG
Full version
PEOPLE

Volosov Vladimir Markovich

Publications in Math-Net.Ru

  1. Asymptotic scheme for a class of partial differential equations

    Dokl. Akad. Nauk SSSR, 207:1 (1972),  15–17
  2. Methods of calculating stationary resonance vibrational and rotational motions of certain non-linear systems

    Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968),  251–294
  3. Certain conditions for stability connected with the study of resonances

    Dokl. Akad. Nauk SSSR, 170:2 (1966),  239–241
  4. Asymptotic estimation of certain rotational motions in the case of resonance

    Dokl. Akad. Nauk SSSR, 161:6 (1965),  1303–1305
  5. On the estimation of oscillatory behaviour for certain non-Hamiltonian systems

    Dokl. Akad. Nauk SSSR, 161:5 (1965),  1048–1050
  6. Stationary operational conditions of some oscillatory systems in resonance

    Dokl. Akad. Nauk SSSR, 156:1 (1964),  50–53
  7. The calculation of stationary resonance conditions in the operation of certain non-linear oscillatory systems

    Dokl. Akad. Nauk SSSR, 153:3 (1963),  559–561
  8. Asymptotic behaviour of certain rotary motions

    Dokl. Akad. Nauk SSSR, 151:6 (1963),  1260–1263
  9. Some types of calculation connected with averaging in the theory of non-linear vibrations

    Zh. Vychisl. Mat. Mat. Fiz., 3:1 (1963),  3–53
  10. On averaging over an unbounded interval

    Dokl. Akad. Nauk SSSR, 145:5 (1962),  965–966
  11. Averaging in certain systems of differential equations

    Dokl. Akad. Nauk SSSR, 145:4 (1962),  713–715
  12. Averaging in systems of ordinary differential equations

    Uspekhi Mat. Nauk, 17:6(108) (1962),  3–126
  13. Higher approximations in averaging

    Dokl. Akad. Nauk SSSR, 137:5 (1961),  1022–1025
  14. The method of averaging

    Dokl. Akad. Nauk SSSR, 137:1 (1961),  21–24
  15. Averaging of some perturbed motions

    Dokl. Akad. Nauk SSSR, 133:2 (1960),  261–264
  16. Solutions of some perturbed systems in the neighbourhood of periodical motions

    Dokl. Akad. Nauk SSSR, 123:4 (1958),  587–590
  17. The asymptotic of the integrals of some disturbed systems

    Dokl. Akad. Nauk SSSR, 121:6 (1958),  959–962
  18. Oscillation equations with slowly variable parameters

    Dokl. Akad. Nauk SSSR, 121:1 (1958),  22–25
  19. Non-linear oscillations with one degree of freedom of a system with slowly varying parameters

    Dokl. Akad. Nauk SSSR, 117:6 (1957),  927–930
  20. Periodical solutions of a non-linear equation of autooscillations

    Dokl. Akad. Nauk SSSR, 115:1 (1957),  20–22
  21. Solutions of second order non-linear differential equations with slowly varying coefficients

    Dokl. Akad. Nauk SSSR, 114:6 (1957),  1149–1152
  22. Quasihomogeneous differential equations of the second order having a small parameter

    Mat. Sb. (N.S.), 36(78):3 (1955),  501–554
  23. On solutions of some differential equations of the second order depending upon a parameter

    Mat. Sb. (N.S.), 31(73):3 (1952),  675–686
  24. On the theory of nonlinear differential equations of higher orders with a small parameter in the highest derivative

    Mat. Sb. (N.S.), 31(73):3 (1952),  645–674
  25. Nonlinear differential equations of the second order with a small parameter with the highest derivative

    Mat. Sb. (N.S.), 30(72):2 (1952),  245–270

  26. Рецензия на книгу Е. А. Гребеникова и Ю. А. Рябова «Новые качественные методы в небесной механике»

    Differ. Uravn., 8:11 (1972),  2106–2107
  27. W. Magnus, S. Winkler. Hill's equation. New York–London–Sydney, Intersci. Publs, a div. of John. Wiley and Sons, 1966, VIII+127 pp., 68 sh. (Book review)

    Zh. Vychisl. Mat. Mat. Fiz., 10:1 (1970),  272
  28. Stability criteria for linear dynamical systems: B. Porter. Oliver & Boyd, 1967. Kriterii ystoichivosti dlya lineinykh dinamicheskikh sistem X+195 pp., B. Porter

    Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968),  503–504
  29. F. Brauer, J. Nohel, Ordinary differential equations elementary and intermediate topics with applications (review)

    Uspekhi Mat. Nauk, 22:4(136) (1967),  194–195
  30. The work of Tikhonov and his pupils on ordinary differential equations containing a small parameter

    Uspekhi Mat. Nauk, 22:2(134) (1967),  149–168
  31. Non-linear differential equations: G. Sansone and R. Conti, (Translated from the Italian), Pergamon Press. Oxford, 536 pp., 1964

    Zh. Vychisl. Mat. Mat. Fiz., 6:3 (1966),  604–605
  32. D. Е. Rutherford. Classical mechanics. 3rd ed. Edinburgh–London, Oliver and Boyd, Ltd, 1964, VIII + 206 pp. Book review

    Zh. Vychisl. Mat. Mat. Fiz., 5:3 (1965),  584
  33. Н. Т. Davis . Introduction to nonlinear differential and integral equations. Book Review

    Zh. Vychisl. Mat. Mat. Fiz., 4:4 (1964),  786–787
  34. To the editor of “Uspekhi Matematicheskikh Nauk”

    Uspekhi Mat. Nauk, 17:5(107) (1962),  221
  35. International Symposium on Non-Linear Oscillations held at Kiev

    Uspekhi Mat. Nauk, 17:2(104) (1962),  215–265


© Steklov Math. Inst. of RAS, 2026