|
|
Publications in Math-Net.Ru
-
Asymptotic scheme for a class of partial differential equations
Dokl. Akad. Nauk SSSR, 207:1 (1972), 15–17
-
Methods of calculating stationary resonance vibrational and rotational motions of certain non-linear systems
Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968), 251–294
-
Certain conditions for stability connected with the study of resonances
Dokl. Akad. Nauk SSSR, 170:2 (1966), 239–241
-
Asymptotic estimation of certain rotational motions in the case of resonance
Dokl. Akad. Nauk SSSR, 161:6 (1965), 1303–1305
-
On the estimation of oscillatory behaviour for certain non-Hamiltonian systems
Dokl. Akad. Nauk SSSR, 161:5 (1965), 1048–1050
-
Stationary operational conditions of some oscillatory systems in resonance
Dokl. Akad. Nauk SSSR, 156:1 (1964), 50–53
-
The calculation of stationary resonance conditions in the operation of certain non-linear oscillatory systems
Dokl. Akad. Nauk SSSR, 153:3 (1963), 559–561
-
Asymptotic behaviour of certain rotary motions
Dokl. Akad. Nauk SSSR, 151:6 (1963), 1260–1263
-
Some types of calculation connected with averaging in the theory of non-linear vibrations
Zh. Vychisl. Mat. Mat. Fiz., 3:1 (1963), 3–53
-
On averaging over an unbounded interval
Dokl. Akad. Nauk SSSR, 145:5 (1962), 965–966
-
Averaging in certain systems of differential equations
Dokl. Akad. Nauk SSSR, 145:4 (1962), 713–715
-
Averaging in systems of ordinary differential equations
Uspekhi Mat. Nauk, 17:6(108) (1962), 3–126
-
Higher approximations in averaging
Dokl. Akad. Nauk SSSR, 137:5 (1961), 1022–1025
-
The method of averaging
Dokl. Akad. Nauk SSSR, 137:1 (1961), 21–24
-
Averaging of some perturbed motions
Dokl. Akad. Nauk SSSR, 133:2 (1960), 261–264
-
Solutions of some perturbed systems in the neighbourhood of periodical motions
Dokl. Akad. Nauk SSSR, 123:4 (1958), 587–590
-
The asymptotic of the integrals of some disturbed systems
Dokl. Akad. Nauk SSSR, 121:6 (1958), 959–962
-
Oscillation equations with slowly variable parameters
Dokl. Akad. Nauk SSSR, 121:1 (1958), 22–25
-
Non-linear oscillations with one degree of freedom of a system with slowly varying parameters
Dokl. Akad. Nauk SSSR, 117:6 (1957), 927–930
-
Periodical solutions of a non-linear equation of autooscillations
Dokl. Akad. Nauk SSSR, 115:1 (1957), 20–22
-
Solutions of second order non-linear differential equations with slowly varying coefficients
Dokl. Akad. Nauk SSSR, 114:6 (1957), 1149–1152
-
Quasihomogeneous differential equations of the second order having a small parameter
Mat. Sb. (N.S.), 36(78):3 (1955), 501–554
-
On solutions of some differential equations of the second order depending upon a parameter
Mat. Sb. (N.S.), 31(73):3 (1952), 675–686
-
On the theory of nonlinear differential equations of higher orders with a small parameter in the highest derivative
Mat. Sb. (N.S.), 31(73):3 (1952), 645–674
-
Nonlinear differential equations of the second order with a small parameter with the highest derivative
Mat. Sb. (N.S.), 30(72):2 (1952), 245–270
-
Рецензия на книгу Е. А. Гребеникова и Ю. А. Рябова «Новые качественные методы в небесной механике»
Differ. Uravn., 8:11 (1972), 2106–2107
-
W. Magnus, S. Winkler. Hill's equation. New York–London–Sydney, Intersci. Publs, a div. of John. Wiley and Sons, 1966, VIII+127 pp., 68 sh. (Book review)
Zh. Vychisl. Mat. Mat. Fiz., 10:1 (1970), 272
-
Stability criteria for linear dynamical systems: B. Porter. Oliver & Boyd, 1967. Kriterii ystoichivosti dlya lineinykh dinamicheskikh sistem X+195 pp., B. Porter
Zh. Vychisl. Mat. Mat. Fiz., 8:2 (1968), 503–504
-
F. Brauer, J. Nohel, Ordinary differential equations elementary and intermediate topics with applications (review)
Uspekhi Mat. Nauk, 22:4(136) (1967), 194–195
-
The work of Tikhonov and his pupils on ordinary differential equations containing a small parameter
Uspekhi Mat. Nauk, 22:2(134) (1967), 149–168
-
Non-linear differential equations: G. Sansone and R. Conti, (Translated from the Italian), Pergamon Press. Oxford, 536 pp., 1964
Zh. Vychisl. Mat. Mat. Fiz., 6:3 (1966), 604–605
-
D. Е. Rutherford. Classical mechanics. 3rd ed. Edinburgh–London, Oliver and Boyd, Ltd, 1964, VIII + 206 pp.
Book review
Zh. Vychisl. Mat. Mat. Fiz., 5:3 (1965), 584
-
Н. Т. Davis . Introduction to nonlinear differential and integral equations. Book Review
Zh. Vychisl. Mat. Mat. Fiz., 4:4 (1964), 786–787
-
To the editor of “Uspekhi Matematicheskikh Nauk”
Uspekhi Mat. Nauk, 17:5(107) (1962), 221
-
International Symposium on Non-Linear Oscillations held at Kiev
Uspekhi Mat. Nauk, 17:2(104) (1962), 215–265
© , 2026