|
|
Publications in Math-Net.Ru
-
On conharmonic curvature tensor of 6-dimensional planar Hermitian submanifolds of Cayley algebra
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2025, no. 1, 81–87
-
On a Property of Quasi-Kähler Manifolds
Mat. Zametki, 115:5 (2024), 658–664
-
A note on the Kirichenko–Uskorev structure
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2023, no. 3, 90–95
-
Vadim Fedorovich Kirichenko
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 220 (2023), 3–16
-
Quasi-Kählerian manifolds and quasi-Sasakian hypersurfaces axiom
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 2, 68–75
-
On hypersurfaces with Kirichenko–Uskorev structure in Kählerian manifolds
Sib. Èlektron. Mat. Izv., 17 (2020), 1715–1721
-
A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 1, 103–108
-
On the Six-Dimensional Sphere with a Nearly Kählerian Structure
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 146 (2018), 3–16
-
On geometry of QS-hypersurfaces of Kählerian manifolds
Sib. Èlektron. Mat. Izv., 15 (2018), 815–822
-
Almost contact metric hypersurfaces with small type numbers in $W_4$-manifolds
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 1, 67–70
-
A note on $2$-hypersurfaces of the nearly Kählerian six-sphere
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 3, 107–114
-
On almost contact metric hypersurfaces with type number $1$ or $0$ in $6$-dimensional Hermitian submanifolds of the Cayley algebra
Sibirsk. Mat. Zh., 58:4 (2017), 721–727
-
On quasi-Sasakian hypersurfaces of Kählerian manifolds
Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 1, 86–89
-
The Axiom of Sasakian Hypersurfaces and Six-Dimensional Hermitian Submanifolds of the Octonion Algebra
Mat. Zametki, 99:1 (2016), 140–144
-
The axiom of cosymplectic surfaces and $W_4$-manifolds
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 5, 34–37
-
A note on six-dimensional planar Hermitian submanifolds of Cayley algebra
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 1, 23–32
-
On almost contact metric hypersurfaces with type number 1 in $6$-dimensional Kählerian submanifolds of Cayley algebra
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 10, 13–18
-
On almost contact metric $1$-hypersurfaces in Kählerian manifolds
Sibirsk. Mat. Zh., 55:4 (2014), 719–723
-
The Kenmotsu hypersurfaces axiom for $6$-dimensional Hermitian submanifolds of the Cayley algebra
Sibirsk. Mat. Zh., 55:2 (2014), 261–266
-
Almost contact metric hypersurfaces with type number $0$ or $1$ in nearly-Kählerian manifolds
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 3, 60–62
-
The type number of flattening six-dimensional Hermitian submanifolds of the Cayley algebra
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 5, 20–24
-
On the Kenmotsu hypersurfaces of special Hermitian manifolds
Sibirsk. Mat. Zh., 45:1 (2004), 11–15
-
On skew-symplectic hypersurfaces of six-dimensional Kählerian submanifolds of the Cayley algebra
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7, 59–63
-
On Six-Dimensional $G2$-Submanifolds of Cayley Algebras
Mat. Zametki, 74:3 (2003), 323–328
-
On Sasakian hypersurfaces in 6-dimensional Hermitian
submanifolds of the Cayley algebra
Mat. Sb., 194:8 (2003), 13–24
-
The type number of the cosymplectic hypersurfaces of 6-dimensional Hermitian submanifolds of the Cayley algebra
Sibirsk. Mat. Zh., 44:5 (2003), 981–991
-
On Hermitian manifolds, satisfying the $U$-cosymplectic hypersurfaces axiom
Fundam. Prikl. Mat., 8:3 (2002), 943–947
-
On the type number of nearly-cosymplectic hypersurfaces in nearly-Kählerian manifolds
Fundam. Prikl. Mat., 8:2 (2002), 357–364
-
Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 1, 9–12
-
Hermitian geometry of 6-dimensional submanifolds of the Cayley algebra
Mat. Sb., 193:5 (2002), 3–16
-
The Hermitian geometry of the 6-dimensional submanifolds of a Cayley algebra
Uspekhi Mat. Nauk, 49:1(295) (1994), 205–206
-
In memory of Vadim Fedorovich Kirichenko
Chebyshevskii Sb., 23:1 (2022), 328–329
© , 2026