RUS  ENG
Full version
PEOPLE

Glotov Oleg Grigorievich

Publications in Math-Net.Ru

  1. Combustion of large aluminium agglomerate particles in air. III. Particle fragmentation

    Fizika Goreniya i Vzryva, 61:5 (2025),  111–119
  2. Combustion of large particles-agglomerates of aluminum in the air. II. Movement and stages of particle combustion

    Fizika Goreniya i Vzryva, 61:4 (2025),  95–112
  3. Combustion of large aluminium agglomerate particles in air. I. Research method, burning time and characteristics of final oxide particles

    Fizika Goreniya i Vzryva, 61:1 (2025),  44–59
  4. Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. II. Numerical modeling results

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 94,  175–187
  5. Study of the additive modifiers effect on the combustion characteristics of composite propellants with aluminium

    Chelyab. Fiz.-Mat. Zh., 9:2 (2024),  195–202
  6. Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. I. Experiment: methodology, processing, results

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92,  125–143
  7. Pocket model of aluminum agglomeration with a tetrahedral cell for composite propellants

    Fizika Goreniya i Vzryva, 59:6 (2023),  91–97
  8. Experimental study of the unsteady burning rate of high-energy materials under depressurization

    Fizika Goreniya i Vzryva, 59:2 (2023),  133–140
  9. Combustion of composite propellants with titanium

    Prikl. Mekh. Tekh. Fiz., 64:1 (2023),  22–26
  10. Combustion of large monolithic titanium particles in air. II. Characteristics of condensed combustion products

    Fizika Goreniya i Vzryva, 58:6 (2022),  51–65
  11. Combustion of large monolithic titanium particles in air. I. Experimental techniques, burning time and fragmentation modes

    Fizika Goreniya i Vzryva, 57:6 (2021),  20–31
  12. Combustion of aluminum and boron agglomerates free falling in air. II. Experimental results

    Fizika Goreniya i Vzryva, 55:3 (2019),  110–117
  13. Combustion of aluminum and boron agglomerates free falling in air. I. Experimental approach

    Fizika Goreniya i Vzryva, 55:3 (2019),  100–109
  14. Combustion of spherical titanium aglomerates in air. III. Movement of agglomerates and the effect of airflow velocity on nanosized combustion products and burning time

    Fizika Goreniya i Vzryva, 55:1 (2019),  49–62
  15. Ignition and combustion of titanium particles: experimental methods and results

    UFN, 189:2 (2019),  135–171
  16. Effect of metal ultrafine powders on the HEM combustion characteristics

    CPM, 18:2 (2016),  179–186
  17. Effect of iron powder on ignition and combustion characteristics of composite solid propellants

    CPM, 17:1 (2015),  12–22
  18. Combustion of model compositions based on furazanotetrazine dioxide and dinitrodiazapentane. I. Binary systems

    Fizika Goreniya i Vzryva, 50:3 (2014),  68–77
  19. Combustion of spherical agglomerates of titanium in air. II. Results of experiments

    Fizika Goreniya i Vzryva, 49:3 (2013),  58–71
  20. Combustion of spherical agglomerates of titanium in air. I. Experimental approach

    Fizika Goreniya i Vzryva, 49:3 (2013),  50–57
  21. Three-dimensional modeling of the structure and combustion of heterogeneous condensed systems

    Fizika Goreniya i Vzryva, 46:6 (2010),  130–134
  22. The evolution of 100-$\mu$m aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant. II. Results

    Fizika Goreniya i Vzryva, 44:6 (2008),  61–71
  23. Evolution of 100-$\mu$m aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant. I. Experimental approach

    Fizika Goreniya i Vzryva, 44:6 (2008),  52–60
  24. Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration

    Fizika Goreniya i Vzryva, 43:3 (2007),  83–97
  25. Formation of metal oxide nanoparticles in combustion of titanium and aluminum droplets

    Fizika Goreniya i Vzryva, 42:6 (2006),  33–47
  26. Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. I. Theoretical study of the ignition and combustion of aluminum with fluorine-containing coatings

    Fizika Goreniya i Vzryva, 42:5 (2006),  46–55
  27. Condensed combustion products of aluminized propellants. IV. Effect of the nature of nitramines on aluminum agglomeration and combustion efficiency

    Fizika Goreniya i Vzryva, 42:4 (2006),  78–92
  28. Macrokinetics of combustion of monodisperse agglomerates in the flame of a model solid propellant

    Fizika Goreniya i Vzryva, 39:5 (2003),  74–85
  29. Condensed combustion products of aluminized propellants. III. Effect of an inert gaseous combustion environment

    Fizika Goreniya i Vzryva, 38:1 (2002),  105–113
  30. Charges and fractal properties of nanoparticles – combustion products of aluminum agglomerates

    Fizika Goreniya i Vzryva, 37:6 (2001),  133–135
  31. Condensed combustion products of aluminized propellants. II. Evolution of particles with distance from the burning surface

    Fizika Goreniya i Vzryva, 36:4 (2000),  66–78
  32. Problems and prospects of investigating the formation and evolution of agglomerates by the sampling method

    Fizika Goreniya i Vzryva, 36:1 (2000),  161–172
  33. Condensed combustion products of aluminized propellants. 1. A technique for investigating the evolution of disperse-phase particles

    Fizika Goreniya i Vzryva, 31:1 (1995),  74–80
  34. Turbulent model for the combustion of a solid fuel composite

    Fizika Goreniya i Vzryva, 24:6 (1988),  17–26
  35. Numerical modeling of ignition in a condensed substance with independent endo- and exothermal reactions

    Fizika Goreniya i Vzryva, 20:4 (1984),  3–10


© Steklov Math. Inst. of RAS, 2026