|
|
Publications in Math-Net.Ru
-
Combustion of large aluminium agglomerate particles in air. III. Particle fragmentation
Fizika Goreniya i Vzryva, 61:5 (2025), 111–119
-
Combustion of large particles-agglomerates of aluminum in the air. II. Movement and stages of particle combustion
Fizika Goreniya i Vzryva, 61:4 (2025), 95–112
-
Combustion of large aluminium agglomerate particles in air. I. Research method, burning time and characteristics of final oxide particles
Fizika Goreniya i Vzryva, 61:1 (2025), 44–59
-
Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. II. Numerical modeling results
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 94, 175–187
-
Study of the additive modifiers effect on the combustion characteristics of composite propellants with aluminium
Chelyab. Fiz.-Mat. Zh., 9:2 (2024), 195–202
-
Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. I. Experiment: methodology, processing, results
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92, 125–143
-
Pocket model of aluminum agglomeration with a tetrahedral cell for composite propellants
Fizika Goreniya i Vzryva, 59:6 (2023), 91–97
-
Experimental study of the unsteady burning rate of high-energy materials under depressurization
Fizika Goreniya i Vzryva, 59:2 (2023), 133–140
-
Combustion of composite propellants with titanium
Prikl. Mekh. Tekh. Fiz., 64:1 (2023), 22–26
-
Combustion of large monolithic titanium particles in air. II. Characteristics of condensed combustion products
Fizika Goreniya i Vzryva, 58:6 (2022), 51–65
-
Combustion of large monolithic titanium particles in air. I. Experimental techniques, burning time and fragmentation modes
Fizika Goreniya i Vzryva, 57:6 (2021), 20–31
-
Combustion of aluminum and boron agglomerates free falling in air. II. Experimental results
Fizika Goreniya i Vzryva, 55:3 (2019), 110–117
-
Combustion of aluminum and boron agglomerates free falling in air. I. Experimental approach
Fizika Goreniya i Vzryva, 55:3 (2019), 100–109
-
Combustion of spherical titanium aglomerates in air. III. Movement of agglomerates and the effect of airflow velocity on nanosized combustion products and burning time
Fizika Goreniya i Vzryva, 55:1 (2019), 49–62
-
Ignition and combustion of titanium particles: experimental methods and results
UFN, 189:2 (2019), 135–171
-
Effect of metal ultrafine powders on the HEM combustion characteristics
CPM, 18:2 (2016), 179–186
-
Effect of iron powder on ignition and combustion characteristics of composite solid propellants
CPM, 17:1 (2015), 12–22
-
Combustion of model compositions based on furazanotetrazine dioxide and dinitrodiazapentane. I. Binary systems
Fizika Goreniya i Vzryva, 50:3 (2014), 68–77
-
Combustion of spherical agglomerates of titanium in air. II. Results of experiments
Fizika Goreniya i Vzryva, 49:3 (2013), 58–71
-
Combustion of spherical agglomerates of titanium in air. I. Experimental approach
Fizika Goreniya i Vzryva, 49:3 (2013), 50–57
-
Three-dimensional modeling of the structure and combustion of heterogeneous condensed systems
Fizika Goreniya i Vzryva, 46:6 (2010), 130–134
-
The evolution of 100-$\mu$m aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant.
II. Results
Fizika Goreniya i Vzryva, 44:6 (2008), 61–71
-
Evolution of 100-$\mu$m aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant.
I. Experimental approach
Fizika Goreniya i Vzryva, 44:6 (2008), 52–60
-
Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration
Fizika Goreniya i Vzryva, 43:3 (2007), 83–97
-
Formation of metal oxide nanoparticles in combustion of titanium and aluminum droplets
Fizika Goreniya i Vzryva, 42:6 (2006), 33–47
-
Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. I. Theoretical study of the ignition and combustion of aluminum with fluorine-containing coatings
Fizika Goreniya i Vzryva, 42:5 (2006), 46–55
-
Condensed combustion products of aluminized propellants. IV. Effect of the nature of nitramines on aluminum agglomeration and combustion efficiency
Fizika Goreniya i Vzryva, 42:4 (2006), 78–92
-
Macrokinetics of combustion of monodisperse agglomerates in the flame of a model solid propellant
Fizika Goreniya i Vzryva, 39:5 (2003), 74–85
-
Condensed combustion products of aluminized propellants. III. Effect of an inert gaseous combustion environment
Fizika Goreniya i Vzryva, 38:1 (2002), 105–113
-
Charges and fractal properties of nanoparticles – combustion products of aluminum agglomerates
Fizika Goreniya i Vzryva, 37:6 (2001), 133–135
-
Condensed combustion products of aluminized propellants. II. Evolution of particles with distance from the burning surface
Fizika Goreniya i Vzryva, 36:4 (2000), 66–78
-
Problems and prospects of investigating the formation and evolution of agglomerates by the sampling method
Fizika Goreniya i Vzryva, 36:1 (2000), 161–172
-
Condensed combustion products of aluminized propellants. 1. A technique for investigating the evolution of disperse-phase particles
Fizika Goreniya i Vzryva, 31:1 (1995), 74–80
-
Turbulent model for the combustion of a solid fuel composite
Fizika Goreniya i Vzryva, 24:6 (1988), 17–26
-
Numerical modeling of ignition in a condensed substance with independent endo- and exothermal reactions
Fizika Goreniya i Vzryva, 20:4 (1984), 3–10
© , 2026