RUS  ENG
Full version
PEOPLE

Rychkov Gennadii Sergeevich

Publications in Math-Net.Ru

  1. Design and investigation of UV image detectors

    Zhurnal Tekhnicheskoi Fiziki, 85:4 (2015),  74–82
  2. Method for the formation of graphene films

    Zhurnal Tekhnicheskoi Fiziki, 84:7 (2014),  62–66
  3. Electron flux amplifier on diamond-coated silicon grating

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:6 (2012),  45–51
  4. Mask for micropattern formation on diamond films

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:5 (2012),  49–55
  5. Vacuum field-emission triode based on electron multiplier concentrator

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:20 (2010),  15–20
  6. Catalytic growth of nanostructures from carbonaceous substrates: Properties and model notions

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:4 (2010),  48–53
  7. Electron multiplier concentrator for integrated field-emission electronics

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:1 (2010),  44–51
  8. A Criterion for the Existence of Several Limit Cycles of the Abel Equation of the Second Kind

    Differ. Uravn., 39:8 (2003),  1058–1061
  9. Bifurcation values of the parameters of the Fitz–Hugh equations

    Differ. Uravn., 30:3 (1994),  405–408
  10. Bifurcation values of the parameters of a system

    Differ. Uravn., 26:5 (1990),  808–814
  11. The maximum number of limit cycles of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the case of three singular points

    Differ. Uravn., 21:6 (1985),  991–997
  12. The absence in the equation $P_1(x,y)dx=(y-P_3(x))dy$ of limit cycles surrounding three singular points

    Differ. Uravn., 20:11 (1984),  1906–1910
  13. Uniqueness of the limit cycle of the equation $(y-P_3(x))dy=P_1(x,y)dx$ in the presence of three singular points

    Differ. Uravn., 19:5 (1983),  904–905
  14. Uniqueness of the limit cycle of the equation $(y-P_3(x))dy=P_1(x,y)dx$

    Differ. Uravn., 16:3 (1980),  433–437
  15. The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two

    Differ. Uravn., 11:2 (1975),  390–391
  16. A proof of the presence of an infinite number of limit cycles for the equation $\ddot y+\mu\ sin$ $(\dot y+\theta )+y=0$

    Differ. Uravn., 9:8 (1973),  1540–1542
  17. The limit cycles of the equation $u(x+1)du=(-x+ax^2+bxu+cu+du^2)dx$

    Differ. Uravn., 8:12 (1972),  2257–2259
  18. A complete investigation of the number of limit cycles of the equation $(b_{10}x+y)dy=\sum_{i+j\ge1}^2a_{ij}x^iy^jdx$

    Differ. Uravn., 6:12 (1970),  2193–2199
  19. The uniqueness of the limit cycle of the system $\dot y=-g(x)$, $\dot x=-f(x)$

    Differ. Uravn., 5:3 (1969),  563–564
  20. Certain criteria for the presence and absence of limit cycles in a dynamic system of second order

    Sibirsk. Mat. Zh., 7:6 (1966),  1425–1431


© Steklov Math. Inst. of RAS, 2026