RUS  ENG
Full version
PEOPLE

Vugal'ter Semen Abramovich

Publications in Math-Net.Ru

  1. On the discrete spectrum of Hamiltonians for pseudo-relativistic electrons

    Izv. RAN. Ser. Mat., 66:1 (2002),  71–102
  2. The Discrete Spectrum of the Hamiltonians of Atoms in a Homogeneous Magnetic Field

    Funktsional. Anal. i Prilozhen., 34:1 (2000),  80–83
  3. Spectral properties of a pseudorelativistic system of two particles with finite masses

    TMF, 121:2 (1999),  297–306
  4. The Discrete Spectrum of a Many-Particle Pseudorelativistic Hamiltonian

    Funktsional. Anal. i Prilozhen., 32:2 (1998),  83–86
  5. Spectral properties of Hamiltonians with magnetic field under fixation of pseudomomentum. I

    TMF, 113:3 (1997),  413–431
  6. Stability of Systems of a Large Number of Particles in Magnetic Fields

    Funktsional. Anal. i Prilozhen., 30:2 (1996),  70–73
  7. Spectral asymptotics of $N$-particle Schrödinger operators with a homogeneous magnetic field on subspaces with fixed $SO(2)$ symmetry

    Algebra i Analiz, 5:2 (1993),  108–125
  8. The limit of stability of positive molecular ions in magnetic fields

    Dokl. Akad. Nauk, 328:5 (1993),  562–563
  9. On the Finiteness of the Discrete Spectrum of the Schrödinger Operator for a Three-Particle System with Unstable Two-Particle Subsystems in a Homogeneous Magnetic Field

    Funktsional. Anal. i Prilozhen., 27:2 (1993),  83–84
  10. Localization of the essential spectrum of the energy operators of $n$-particle quantum systems in a magnetic field

    TMF, 97:1 (1993),  94–112
  11. On the spectrum of Schrödinger operator for $3$-particle system without $2$-particle stable subsystems in homogeneous magnetic field

    Dokl. Akad. Nauk, 322:2 (1992),  281–283
  12. On the asymptotics of the discrete spectrum of given symmetry of multiparticle Hamiltonians

    Tr. Mosk. Mat. Obs., 54 (1992),  186–212
  13. Absence of discrete spectrum of the Schrödinger operators of positive molecular ions

    TMF, 93:1 (1992),  94–106
  14. On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field

    Zap. Nauchn. Sem. LOMI, 197 (1992),  28–41
  15. Asymptotics of the discrete spectrum of Hamiltonians of many-particle quantum systems in a homogeneous magnetic field

    Algebra i Analiz, 3:6 (1991),  119–154
  16. On the discrete spectrum of Hamiltonians of multiparticle systems in a homogeneous magnetic field

    Dokl. Akad. Nauk SSSR, 317:6 (1991),  1365–1369
  17. Discrete spectrum of a given symmetry of the Schrödinger operator of an $n$-particle system in a homogeneous magnetic field

    Funktsional. Anal. i Prilozhen., 25:4 (1991),  83–86
  18. Exact asymptotic behavior of the discrete spectrum of the $n$-particle Schrödinger operator in symmetry space

    Dokl. Akad. Nauk SSSR, 312:2 (1990),  339–342
  19. Asymptotic behavior of the eigenvalues of many-particle Hamiltonians on subspaces of functions of a given symmetry

    TMF, 83:2 (1990),  236–246
  20. On the stability of $N$-particle systems

    TMF, 76:1 (1988),  132–142
  21. The spectrum of the Schrödinger operators of multiparticle systems with short-range potentials

    Tr. Mosk. Mat. Obs., 49 (1986),  95–112
  22. On the discrete spectrum of the energy operator of one- and two-dimensional quantum three-particle systems

    TMF, 55:2 (1983),  269–281
  23. On finiteness of the discrete spectrum of the energy operators of multiatomic molecules

    TMF, 55:1 (1983),  66–77
  24. On the discrete spectrum of Schrödinger operators of many-particle systems with two-particle virtual levels

    Dokl. Akad. Nauk SSSR, 267:4 (1982),  784–786
  25. Absence of Efimov's effect in the spaces of functions with a given symmetry

    Dokl. Akad. Nauk SSSR, 257:2 (1981),  324–326
  26. Discrete spectrum of many-particle quantum systems not having stable subsystems. II

    Funktsional. Anal. i Prilozhen., 14:3 (1980),  69–70
  27. The discrete spectrum of the $n$-particle quantum system energy operator

    Dokl. Akad. Nauk SSSR, 240:4 (1978),  817–820
  28. Discrete spectrum of multifrequency quantum systems possessing no stable subsystems

    Funktsional. Anal. i Prilozhen., 12:3 (1978),  74–75
  29. Finiteness of the discrete spectrum of many-particle Hamiltonians in symmetry spaces

    TMF, 32:1 (1977),  70–87

  30. Erratum: “On the discrete spectrum of Hamiltonians of multiparticle systems in a homogeneous magnetic field” (Dokl. Akad. Nauk SSSR, 317 (1991), № 6, 1365–1369)

    Dokl. Akad. Nauk SSSR, 318:5 (1991),  1032


© Steklov Math. Inst. of RAS, 2026