|
|
Publications in Math-Net.Ru
-
On the discrete spectrum of Hamiltonians for pseudo-relativistic electrons
Izv. RAN. Ser. Mat., 66:1 (2002), 71–102
-
The Discrete Spectrum of the Hamiltonians of Atoms in a Homogeneous Magnetic Field
Funktsional. Anal. i Prilozhen., 34:1 (2000), 80–83
-
Spectral properties of a pseudorelativistic system of two particles with finite masses
TMF, 121:2 (1999), 297–306
-
The Discrete Spectrum of a Many-Particle Pseudorelativistic Hamiltonian
Funktsional. Anal. i Prilozhen., 32:2 (1998), 83–86
-
Spectral properties of Hamiltonians with magnetic field under fixation of pseudomomentum. I
TMF, 113:3 (1997), 413–431
-
Stability of Systems of a Large Number of Particles in Magnetic Fields
Funktsional. Anal. i Prilozhen., 30:2 (1996), 70–73
-
Spectral asymptotics of $N$-particle Schrödinger operators with a homogeneous magnetic field on subspaces with fixed $SO(2)$ symmetry
Algebra i Analiz, 5:2 (1993), 108–125
-
The limit of stability of positive molecular ions in magnetic
fields
Dokl. Akad. Nauk, 328:5 (1993), 562–563
-
On the Finiteness of the Discrete Spectrum of the Schrödinger Operator for a Three-Particle System with Unstable Two-Particle Subsystems in a Homogeneous Magnetic Field
Funktsional. Anal. i Prilozhen., 27:2 (1993), 83–84
-
Localization of the essential spectrum of the energy operators of $n$-particle quantum systems in a magnetic field
TMF, 97:1 (1993), 94–112
-
On the spectrum of Schrödinger operator for $3$-particle system without $2$-particle stable subsystems in homogeneous magnetic field
Dokl. Akad. Nauk, 322:2 (1992), 281–283
-
On the asymptotics of the discrete spectrum of given symmetry of multiparticle Hamiltonians
Tr. Mosk. Mat. Obs., 54 (1992), 186–212
-
Absence of discrete spectrum of the Schrödinger operators of positive molecular ions
TMF, 93:1 (1992), 94–106
-
On the discrete-spectrum of the given $SO(2)$ symmetry of many-particle systems with the potential field and the homogeneous magnetic field
Zap. Nauchn. Sem. LOMI, 197 (1992), 28–41
-
Asymptotics of the discrete spectrum of Hamiltonians of many-particle quantum systems in a homogeneous magnetic field
Algebra i Analiz, 3:6 (1991), 119–154
-
On the discrete spectrum of Hamiltonians of multiparticle systems
in a homogeneous magnetic field
Dokl. Akad. Nauk SSSR, 317:6 (1991), 1365–1369
-
Discrete spectrum of a given symmetry of the Schrödinger operator of an $n$-particle system in a homogeneous magnetic field
Funktsional. Anal. i Prilozhen., 25:4 (1991), 83–86
-
Exact asymptotic behavior of the discrete spectrum of the $n$-particle Schrödinger operator in symmetry space
Dokl. Akad. Nauk SSSR, 312:2 (1990), 339–342
-
Asymptotic behavior of the eigenvalues of many-particle Hamiltonians on subspaces of functions of a given symmetry
TMF, 83:2 (1990), 236–246
-
On the stability of $N$-particle systems
TMF, 76:1 (1988), 132–142
-
The spectrum of the Schrödinger operators of multiparticle systems with short-range potentials
Tr. Mosk. Mat. Obs., 49 (1986), 95–112
-
On the discrete spectrum of the energy operator of one- and two-dimensional quantum three-particle systems
TMF, 55:2 (1983), 269–281
-
On finiteness of the discrete spectrum of the energy operators of multiatomic molecules
TMF, 55:1 (1983), 66–77
-
On the discrete spectrum of Schrödinger operators of many-particle systems with two-particle virtual levels
Dokl. Akad. Nauk SSSR, 267:4 (1982), 784–786
-
Absence of Efimov's effect in the spaces of functions with a given symmetry
Dokl. Akad. Nauk SSSR, 257:2 (1981), 324–326
-
Discrete spectrum of many-particle quantum systems not having stable subsystems. II
Funktsional. Anal. i Prilozhen., 14:3 (1980), 69–70
-
The discrete spectrum of the $n$-particle quantum system energy operator
Dokl. Akad. Nauk SSSR, 240:4 (1978), 817–820
-
Discrete spectrum of multifrequency quantum systems possessing no stable subsystems
Funktsional. Anal. i Prilozhen., 12:3 (1978), 74–75
-
Finiteness of the discrete spectrum of many-particle Hamiltonians in symmetry spaces
TMF, 32:1 (1977), 70–87
-
Erratum: “On the discrete spectrum of Hamiltonians of multiparticle systems in a homogeneous magnetic field” (Dokl. Akad. Nauk SSSR, 317 (1991), № 6, 1365–1369)
Dokl. Akad. Nauk SSSR, 318:5 (1991), 1032
© , 2026