RUS  ENG
Full version
PEOPLE

Loboda Alexander Vasil'evich

Publications in Math-Net.Ru

  1. On the amount of nondegenerate tubular orbits of 7-dimensional lie algebras in $\mathbb C^4$

    Funktsional. Anal. i Prilozhen., 59:2 (2025),  67–73
  2. On orbits in $ \mathbb C^4 $ of $7$-dimensional Lie algebras possessing two Abelian subalgebras

    Ufimsk. Mat. Zh., 17:3 (2025),  64–81
  3. On nondegenerate orbits of $7$-dimensional Lie algebras containing a $3$-dimensional Abelian ideal

    CMFD, 70:4 (2024),  517–532
  4. Алгебры Ли со «слабыми» коммутативными свойствами и задача об однородности

    Tr. Mosk. Mat. Obs., 85:1 (2024),  129–155
  5. On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $, having a 5-dimensional abelian ideal

    Dal'nevost. Mat. Zh., 23:1 (2023),  55–80
  6. About linear homogeneous hypersurfaces in $ \Bbb R^4 $

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1,  51–74
  7. On $7$-dimensional Lie algebras admitting Levi-nondegenerate orbits in $\mathbb{C}^4$

    Tr. Mosk. Mat. Obs., 84:2 (2023),  205–230
  8. On degeneracy of orbits of nilpotent Lie algebras

    Ufimsk. Mat. Zh., 14:1 (2022),  57–83
  9. On some topological characteristics of harmonic polynomials

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 5,  23–32
  10. On Harmonic Polynomials Invariant under Unitary Transformations

    Mat. Zametki, 109:6 (2021),  856–871
  11. On the orbits of nilpotent 7-dimensional lie algebras in 4-dimensional complex space

    J. Sib. Fed. Univ. Math. Phys., 13:3 (2020),  360–372
  12. Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$

    Tr. Mosk. Mat. Obs., 81:2 (2020),  205–280
  13. On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces

    Trudy Mat. Inst. Steklova, 311 (2020),  194–212
  14. On holomorphic realizations of 5-dimensional Lie algebras

    Algebra i Analiz, 31:6 (2019),  1–37
  15. On Holomorphic Realizations of Nilpotent Lie Algebras

    Funktsional. Anal. i Prilozhen., 53:2 (2019),  59–63
  16. Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in $\mathbb{C}^3$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 173 (2019),  86–115
  17. On the orbits of one non-solvable 5-dimensional Lie algebra

    Mathematical Physics and Computer Simulation, 22:2 (2019),  5–20
  18. On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$

    Trudy Mat. Inst. Steklova, 298 (2017),  20–41
  19. On Affine Homogeneous Real Hypersurfaces of General position in $\Bbb C^3$

    Mathematical Physics and Computer Simulation, 20:3 (2017),  111–135
  20. On complete list of affinely homogeneous surfaces of ($\varepsilon,0$)-types in the space $\mathbb C^3$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 6,  75–81
  21. Affine-Homogeneous Surfaces of Type $(0,0)$ in the Space $\mathbb C^3$

    Mat. Zametki, 97:2 (2015),  309–313
  22. On dimensions of affine transformation groups transitively acting on a real hypersurfaces in $\Bbb C^3$

    Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 4(23),  11–35
  23. Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$

    Funktsional. Anal. i Prilozhen., 47:2 (2013),  38–54
  24. Various representations of matrix Lie algebras related to homogeneous surfaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 4,  42–60
  25. On the affine homogeneity of tubular type surfaces in $\mathbb C^3$

    Trudy Mat. Inst. Steklova, 279 (2012),  102–119
  26. Affine Homogeneity of Indefinite Real Hypersurfaces in the Space $\mathbb{C}^3$

    Mat. Zametki, 88:6 (2010),  867–884
  27. An Example of a Two-Parameter Family of Affine Homogeneous Real Hypersurfaces in $\mathbb C^3$

    Mat. Zametki, 84:5 (2008),  791–794
  28. Real subalgebras of small dimensions of the matrix lie algebra $M(2,\mathbb C)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 5,  13–24
  29. On a Family of Lie Algebras Related to Homogeneous Surfaces

    Trudy Mat. Inst. Steklova, 253 (2006),  111–126
  30. On a family of affine-homogeneous real hypersurfaces of a three-dimensional complex space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 10,  38–50
  31. Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation

    Mat. Zametki, 73:3 (2003),  453–456
  32. Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups

    Funktsional. Anal. i Prilozhen., 36:2 (2002),  80–83
  33. On normal equations of affinely homogeneous convex surfaces of the space $\mathbb R^3$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 3,  25–32
  34. Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups

    Mat. Sb., 192:12 (2001),  3–24
  35. Each homotopically homogeneous tube in $C^2$ has an affine-homogeneous base

    Sibirsk. Mat. Zh., 42:6 (2001),  1335–1339
  36. Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups

    Trudy Mat. Inst. Steklova, 235 (2001),  114–142
  37. Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations

    Funktsional. Anal. i Prilozhen., 34:2 (2000),  33–42
  38. On the Dimension of a Group Transitively Acting on a Hypersurface in $\mathbb{C}^3$

    Funktsional. Anal. i Prilozhen., 33:1 (1999),  68–71
  39. Canonical form of a fourth-degree polynomial in a normal equation of a real hypersurface in $\mathbb C^3$

    Mat. Zametki, 66:4 (1999),  624–626
  40. On the determination of an affine-homogeneous saddle surface of the space $\mathbb R^3$ from the coefficients of its normal equation

    Mat. Zametki, 65:5 (1999),  793–797
  41. Holomorphic invariants of logarithmic spirals

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 2,  16–19
  42. Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$

    Mat. Zametki, 64:6 (1998),  881–887
  43. Sphericity of rigid hypersurfaces in $\mathbb C^2$

    Mat. Zametki, 62:3 (1997),  391–403
  44. Some invariants of tubular hypersurfaces in $\mathbb C^2$

    Mat. Zametki, 59:2 (1996),  211–223
  45. Infinitesimal $\operatorname{CR}$-diffeomorphisms of hypersurfaces in $\mathbb C^2$

    Mat. Zametki, 57:6 (1995),  862–874
  46. The Continuity of Reduction of Hypersurfaces in $\mathbb{C}^2$ to a Normal Form

    Funktsional. Anal. i Prilozhen., 27:4 (1993),  81–84
  47. On normal equations for surfaces containing flat totally real submanifolds

    Mat. Zametki, 52:1 (1992),  76–86
  48. Linearizability of holomorphic mappings of generating manifolds of codimension 2 in $\mathbf C^4$

    Izv. Akad. Nauk SSSR Ser. Mat., 54:3 (1990),  632–644
  49. Real-analytic generating manifolds of codimension $2$ in $\mathbf C^4$ and their biholomorphic mappings

    Izv. Akad. Nauk SSSR Ser. Mat., 52:5 (1988),  970–990
  50. Linearization of local automorphisms of pseudoconvex surfaces

    Dokl. Akad. Nauk SSSR, 271:2 (1983),  280–282
  51. Linearizability of automorphisms of non-spherical surfaces

    Izv. Akad. Nauk SSSR Ser. Mat., 46:4 (1982),  864–880
  52. On local automorphisms of real analytic hypersurfaces

    Izv. Akad. Nauk SSSR Ser. Mat., 45:3 (1981),  620–645

  53. Vladimir Mikhailovich Miklyukov (obituary)

    Uspekhi Mat. Nauk, 69:3(417) (2014),  173–176


© Steklov Math. Inst. of RAS, 2026