|
|
Publications in Math-Net.Ru
-
On the amount of nondegenerate tubular orbits of 7-dimensional lie algebras in $\mathbb C^4$
Funktsional. Anal. i Prilozhen., 59:2 (2025), 67–73
-
On orbits in $ \mathbb C^4 $ of $7$-dimensional Lie algebras possessing two Abelian subalgebras
Ufimsk. Mat. Zh., 17:3 (2025), 64–81
-
On nondegenerate orbits of $7$-dimensional Lie algebras containing a $3$-dimensional Abelian ideal
CMFD, 70:4 (2024), 517–532
-
Алгебры Ли со «слабыми» коммутативными свойствами и задача об однородности
Tr. Mosk. Mat. Obs., 85:1 (2024), 129–155
-
On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $,
having a 5-dimensional abelian ideal
Dal'nevost. Mat. Zh., 23:1 (2023), 55–80
-
About linear homogeneous hypersurfaces in $ \Bbb R^4 $
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1, 51–74
-
On $7$-dimensional Lie algebras admitting Levi-nondegenerate orbits in $\mathbb{C}^4$
Tr. Mosk. Mat. Obs., 84:2 (2023), 205–230
-
On degeneracy of orbits of nilpotent Lie algebras
Ufimsk. Mat. Zh., 14:1 (2022), 57–83
-
On some topological characteristics of harmonic polynomials
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 5, 23–32
-
On Harmonic Polynomials Invariant under Unitary Transformations
Mat. Zametki, 109:6 (2021), 856–871
-
On the orbits of nilpotent 7-dimensional lie algebras in 4-dimensional complex space
J. Sib. Fed. Univ. Math. Phys., 13:3 (2020), 360–372
-
Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$
Tr. Mosk. Mat. Obs., 81:2 (2020), 205–280
-
On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces
Trudy Mat. Inst. Steklova, 311 (2020), 194–212
-
On holomorphic realizations of 5-dimensional Lie algebras
Algebra i Analiz, 31:6 (2019), 1–37
-
On Holomorphic Realizations of Nilpotent Lie Algebras
Funktsional. Anal. i Prilozhen., 53:2 (2019), 59–63
-
Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in $\mathbb{C}^3$
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 173 (2019), 86–115
-
On the orbits of one non-solvable 5-dimensional Lie algebra
Mathematical Physics and Computer Simulation, 22:2 (2019), 5–20
-
On Holomorphic Homogeneity of Real Hypersurfaces of General Position in $\mathbb C^3$
Trudy Mat. Inst. Steklova, 298 (2017), 20–41
-
On Affine Homogeneous Real Hypersurfaces of General position in $\Bbb C^3$
Mathematical Physics and Computer Simulation, 20:3 (2017), 111–135
-
On complete list of affinely homogeneous surfaces of ($\varepsilon,0$)-types in the space $\mathbb C^3$
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 6, 75–81
-
Affine-Homogeneous Surfaces of Type $(0,0)$ in the Space $\mathbb C^3$
Mat. Zametki, 97:2 (2015), 309–313
-
On dimensions of affine transformation groups transitively acting
on a real hypersurfaces in $\Bbb C^3$
Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 4(23), 11–35
-
Affinely Homogeneous Real Hypersurfaces of $\mathbb{C}^2$
Funktsional. Anal. i Prilozhen., 47:2 (2013), 38–54
-
Various representations of matrix Lie algebras related to homogeneous surfaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 4, 42–60
-
On the affine homogeneity of tubular type surfaces in $\mathbb C^3$
Trudy Mat. Inst. Steklova, 279 (2012), 102–119
-
Affine Homogeneity of Indefinite Real Hypersurfaces in the Space $\mathbb{C}^3$
Mat. Zametki, 88:6 (2010), 867–884
-
An Example of a Two-Parameter Family of Affine Homogeneous Real Hypersurfaces in $\mathbb C^3$
Mat. Zametki, 84:5 (2008), 791–794
-
Real subalgebras of small dimensions of the matrix lie algebra $M(2,\mathbb C)$
Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 5, 13–24
-
On a Family of Lie Algebras Related to Homogeneous Surfaces
Trudy Mat. Inst. Steklova, 253 (2006), 111–126
-
On a family of affine-homogeneous real hypersurfaces of a three-dimensional complex space
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 10, 38–50
-
Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation
Mat. Zametki, 73:3 (2003), 453–456
-
Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups
Funktsional. Anal. i Prilozhen., 36:2 (2002), 80–83
-
On normal equations of affinely homogeneous convex surfaces of the space $\mathbb R^3$
Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 3, 25–32
-
Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups
Mat. Sb., 192:12 (2001), 3–24
-
Each homotopically homogeneous tube in $C^2$ has an affine-homogeneous base
Sibirsk. Mat. Zh., 42:6 (2001), 1335–1339
-
Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups
Trudy Mat. Inst. Steklova, 235 (2001), 114–142
-
Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations
Funktsional. Anal. i Prilozhen., 34:2 (2000), 33–42
-
On the Dimension of a Group Transitively Acting on a Hypersurface in $\mathbb{C}^3$
Funktsional. Anal. i Prilozhen., 33:1 (1999), 68–71
-
Canonical form of a fourth-degree polynomial in a normal equation of a real hypersurface in $\mathbb C^3$
Mat. Zametki, 66:4 (1999), 624–626
-
On the determination of an affine-homogeneous saddle surface of the space $\mathbb R^3$ from the coefficients of its normal equation
Mat. Zametki, 65:5 (1999), 793–797
-
Holomorphic invariants of logarithmic spirals
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 2, 16–19
-
Different definitions of homogeneity of real hypersurfaces in $\mathbb C^2$
Mat. Zametki, 64:6 (1998), 881–887
-
Sphericity of rigid hypersurfaces in $\mathbb C^2$
Mat. Zametki, 62:3 (1997), 391–403
-
Some invariants of tubular hypersurfaces in $\mathbb C^2$
Mat. Zametki, 59:2 (1996), 211–223
-
Infinitesimal $\operatorname{CR}$-diffeomorphisms of hypersurfaces in $\mathbb C^2$
Mat. Zametki, 57:6 (1995), 862–874
-
The Continuity of Reduction of Hypersurfaces in $\mathbb{C}^2$ to a Normal Form
Funktsional. Anal. i Prilozhen., 27:4 (1993), 81–84
-
On normal equations for surfaces containing flat totally real submanifolds
Mat. Zametki, 52:1 (1992), 76–86
-
Linearizability of holomorphic mappings of generating manifolds of codimension 2 in $\mathbf C^4$
Izv. Akad. Nauk SSSR Ser. Mat., 54:3 (1990), 632–644
-
Real-analytic generating manifolds of codimension $2$ in $\mathbf C^4$ and their biholomorphic mappings
Izv. Akad. Nauk SSSR Ser. Mat., 52:5 (1988), 970–990
-
Linearization of local automorphisms of pseudoconvex surfaces
Dokl. Akad. Nauk SSSR, 271:2 (1983), 280–282
-
Linearizability of automorphisms of non-spherical surfaces
Izv. Akad. Nauk SSSR Ser. Mat., 46:4 (1982), 864–880
-
On local automorphisms of real analytic hypersurfaces
Izv. Akad. Nauk SSSR Ser. Mat., 45:3 (1981), 620–645
-
Vladimir Mikhailovich Miklyukov (obituary)
Uspekhi Mat. Nauk, 69:3(417) (2014), 173–176
© , 2026