RUS  ENG
Full version
PEOPLE

Maslov Dmitry Alexandrovich

Publications in Math-Net.Ru

  1. Method of holomorphic regularization of the Cauchy problem for one class of nonlinear Tikhonov systems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 244 (2025),  79–85
  2. Nonlinear dynamics for cylindrical resonator of wave solid-state gyroscope with different number of electrostatic control sensors

    Izvestiya VUZ. Applied Nonlinear Dynamics, 33:4 (2025),  466–484
  3. The Holomorphic Regularization Method of the Tikhonov System of Differential Equations for Mathematical Modeling of Wave Solid-State Gyroscope Dynamics

    Rus. J. Nonlin. Dyn., 21:2 (2025),  233–248
  4. Analytical solutions for a class of nonlinear boundary value problems for beam deflection with a small parameter

    Russian Journal of Cybernetics, 6:4 (2025),  64–70
  5. Small parameter method in the theory of Burgers-type equations

    Zh. Vychisl. Mat. Mat. Fiz., 64:12 (2024),  2371–2377
  6. About one method for numerical solution of the Cauchy problem for singularly perturbed differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 64:5 (2024),  804–818
  7. Nonlinear Dynamics of a Wave Solid-State Gyroscope Taking into Account the Electrical Resistance of an Oscillation Control Circuit

    Rus. J. Nonlin. Dyn., 19:3 (2023),  409–435
  8. Analyticity and pseudo-analyticity in the small parameter method

    Zh. Vychisl. Mat. Mat. Fiz., 63:11 (2023),  1806–1814
  9. An Asymptotic Method for Reducing Systems of Differential Equations with Almost-Periodic Matrices

    Mat. Zametki, 105:1 (2019),  9–17
  10. Increase in the Accuracy of the Parameters Identification for a Vibrating Ring Microgyroscope Operating in the Forced Oscillation Mode with Nonlinearity Taken into Account

    Nelin. Dinam., 14:3 (2018),  377–386
  11. Analysis of nonautonomous systems of ordinary differential equations with exponentially periodic matrix

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10,  62–69
  12. Specific Features of the Study of Nonautonomous Differential Equations with Exponential-Type Matrices

    Mat. Zametki, 101:2 (2017),  226–231
  13. The linearization for wave solid-state gyroscope resonator oscillations and electrostatic control sensors forces

    Nelin. Dinam., 13:3 (2017),  413–421
  14. Compensation of errors taking into account nonlinear oscillations of the vibrating ring microgyroscope operating in the angular velocity sensor mode

    Nelin. Dinam., 13:2 (2017),  227–241


© Steklov Math. Inst. of RAS, 2026