RUS  ENG
Full version
PEOPLE

Schwidefsky Marina Vladimirovna

Publications in Math-Net.Ru

  1. Duality for bi-algebraic lattices belonging to the variety of $(0,1)$-lattices generated by the pentagon

    Algebra Logika, 63:2 (2024),  167–208
  2. To the theory of H-sober spaces

    Sibirsk. Mat. Zh., 65:4 (2024),  653–671
  3. The quasivariety $\mathbf{SP}(L_6)$. II: A duality result

    Sibirsk. Mat. Zh., 65:3 (2024),  446–454
  4. Existence of independent quasi-equational bases. II

    Algebra Logika, 62:6 (2023),  762–785
  5. Stone dualities for distributive posets

    Algebra Logika, 62:5 (2023),  637–664
  6. The complexity of quasivariety lattices. II

    Sib. Èlektron. Mat. Izv., 20:1 (2023),  501–513
  7. Quasivarieties generated by small suborder lattices. I. Equational bases

    Sib. Èlektron. Mat. Izv., 20:1 (2023),  62–71
  8. Decompositions in semirings

    Sibirsk. Mat. Zh., 64:4 (2023),  720–732
  9. The quasivariety $\mathbf{S}\mathbf{P}(L_6)$. I. An equational basis

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  902–911
  10. On function spaces. II

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  815–834
  11. On nonstandard quasivarieties of differential groupoids and unary algebras

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  768–783
  12. Structure of quasivariety lattices. IV. Nonstandard quasivarieties

    Sibirsk. Mat. Zh., 62:5 (2021),  1049–1060
  13. Structure of quasivariety lattices. III. Finitely partitionable bases

    Algebra Logika, 59:3 (2020),  323–333
  14. On sufficient conditions for $Q$-universality

    Sib. Èlektron. Mat. Izv., 17 (2020),  1043–1051
  15. On function spaces

    Sib. Èlektron. Mat. Izv., 17 (2020),  999–1008
  16. On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras

    Sib. Èlektron. Mat. Izv., 17 (2020),  753–768
  17. On a class of subsemigroup lattices

    Sibirsk. Mat. Zh., 61:5 (2020),  1177–1193
  18. To the spectral theory of partially ordered sets. ii

    Sibirsk. Mat. Zh., 61:3 (2020),  572–586
  19. Existence of independent quasi-equational bases

    Algebra Logika, 58:6 (2019),  769–803
  20. Structure of quasivariety lattices. II. Undecidable problems

    Algebra Logika, 58:2 (2019),  179–199
  21. To the spectral theory of partially ordered sets

    Sibirsk. Mat. Zh., 60:3 (2019),  578–598
  22. Structure of Quasivariety Lattices. I. Independent Axiomatizability

    Algebra Logika, 57:6 (2018),  684–710
  23. Quasiequational bases of Cantor algebras

    Sibirsk. Mat. Zh., 59:3 (2018),  481–490
  24. Decompositions in complete lattices III. Unique irredundant decompositions and convex geometries

    Algebra Logika, 56:5 (2017),  613–635
  25. Decompositions in complete lattices. II. Replaceable irredundant decompositions

    Algebra Logika, 56:3 (2017),  354–366
  26. On quasi-equational bases for differential groupoids and unary algebras

    Sib. Èlektron. Mat. Izv., 14 (2017),  1330–1337
  27. Lattices of subclasses. III

    Sib. Èlektron. Mat. Izv., 14 (2017),  252–263
  28. The class of bounded lattices is not axiomatizable

    Algebra Logika, 55:4 (2016),  493–497
  29. Complexity of quasivariety lattices

    Algebra Logika, 54:3 (2015),  381–398
  30. Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation

    Algebra Logika, 53:4 (2014),  466–504
  31. Lattices of subclasses

    Sibirsk. Mat. Zh., 53:5 (2012),  1111–1132
  32. On lattices connected with various types of classes of algebraic structures

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  167–179
  33. Embedding Lattices into Derived Lattices

    Sovrem. Probl. Mat., 15 (2011),  67–82
  34. Lattices isomorphic to subsemilattice lattices of finite trees

    Algebra Logika, 48:4 (2009),  471–494
  35. On lattices embeddable into subsemigroup lattices. V. Trees

    Sibirsk. Mat. Zh., 48:4 (2007),  894–913
  36. On lattices embeddable into subsemigroup lattices. III: Nilpotent semigroups

    Sibirsk. Mat. Zh., 48:1 (2007),  192–204
  37. Lattices Embeddable in Subsemigroup Lattices. II. Cancellative Semigroups

    Algebra Logika, 45:4 (2006),  436–446
  38. Lattices Embeddable in Subsemigroup Lattices. I. Semilattices

    Algebra Logika, 45:2 (2006),  215–230
  39. Lattices That are Embeddable in Suborder Lattices

    Algebra Logika, 44:4 (2005),  483–511
  40. Sublattices of Lattices of Convex Subsets of Vector Spaces

    Algebra Logika, 43:3 (2004),  261–290
  41. Decompositions in Complete Lattices

    Algebra Logika, 40:6 (2001),  685–697
  42. Lattices with unique irreducible decompositions

    Algebra Logika, 39:1 (2000),  93–103
  43. Lattices of suborders

    Sibirsk. Mat. Zh., 40:3 (1999),  673–682
  44. Observation and experimental study of monoclinic distortions in $\mathrm{Sm}_{0.5}\mathrm{Eu}_{0.5}\mathrm{FeO}_{3}$ orthoferrite in spontaneous spin reorientating transitions

    Fizika Tverdogo Tela, 29:5 (1987),  1569–1571
  45. Specific features of $f$$d$-exchange in $\mathrm{Al}$-substituted gadolinium orthochromite

    Fizika Tverdogo Tela, 29:3 (1987),  679–684

  46. Yurii Leonidovich Ershov (on his 80th birthday)

    Uspekhi Mat. Nauk, 75:3(453) (2020),  191–194
  47. Evgenii Andreevich Palyutin (1945–2018)

    Sib. Èlektron. Mat. Izv., 16 (2019),  1–10
  48. Yurii Leonidovich Ershov (on the occasion of his 75th birthday)

    Sibirsk. Mat. Zh., 56:3 (2015),  477–480
  49. Yurii Leonidovich Ershov (on his seventieth birthday)

    Vladikavkaz. Mat. Zh., 12:2 (2010),  75–78


© Steklov Math. Inst. of RAS, 2026