RUS  ENG
Full version
PEOPLE

Norbosambuev Tsyrendorji Dashatsyrenovich

Publications in Math-Net.Ru

  1. Conjugate idempotent formal matrices of order $2$ over residue class rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 95,  19–27
  2. Idempotent and nil-clean formal matrices of order 2 over residue class rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 93,  30–40
  3. Isomorphisms of incidence algebras

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92,  19–28
  4. Nilpotent, nil-good, and nil-clean formal matrices over residue class rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 91,  31–40
  5. On automorphisms and derivations of reduced incidence algebras and coalgebras

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 90,  33–39
  6. Good formal matrix rings over residue class rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 85,  32–42
  7. About $k$-nil-good formal matrix rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77,  17–26
  8. $k$-good formal matrix rings of infinite order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 6,  35–42
  9. On a class of 3-good formal matrix rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 67,  55–62
  10. Automorphisms of formal matrix algebras

    Sibirsk. Mat. Zh., 59:5 (2018),  1116–1127
  11. Group of automorphisms of one class of formal matrix algebras

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 53,  16–21
  12. Rank of formal matrix. System of formal linear equations. Zero divisors

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 52,  5–12
  13. On sums of diagonal and invertible formal matrices

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 4(36),  34–40

  14. Andrey Rostislavovich Chekhlov (to the 65th anniversary of his birth)

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 88,  179–185
  15. Pyotr Andreevich Krylov. To the 75th birthday

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 84,  167–173


© Steklov Math. Inst. of RAS, 2026