|
|
Publications in Math-Net.Ru
-
Conjugate idempotent formal matrices of order $2$ over residue class rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 95, 19–27
-
Idempotent and nil-clean formal matrices of order 2 over residue class rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 93, 30–40
-
Isomorphisms of incidence algebras
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92, 19–28
-
Nilpotent, nil-good, and nil-clean formal matrices over residue class rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 91, 31–40
-
On automorphisms and derivations of reduced incidence algebras and coalgebras
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 90, 33–39
-
Good formal matrix rings over residue class rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 85, 32–42
-
About $k$-nil-good formal matrix rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77, 17–26
-
$k$-good formal matrix rings of infinite order
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 6, 35–42
-
On a class of 3-good formal matrix rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 67, 55–62
-
Automorphisms of formal matrix algebras
Sibirsk. Mat. Zh., 59:5 (2018), 1116–1127
-
Group of automorphisms of one class of formal matrix algebras
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 53, 16–21
-
Rank of formal matrix. System of formal linear equations. Zero divisors
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 52, 5–12
-
On sums of diagonal and invertible formal matrices
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 4(36), 34–40
-
Andrey Rostislavovich Chekhlov (to the 65th anniversary of his birth)
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 88, 179–185
-
Pyotr Andreevich Krylov. To the 75th birthday
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 84, 167–173
© , 2026