|
|
Publications in Math-Net.Ru
-
On limit theorems for the distribution of the maximal element in a sequence of random variables
Teor. Veroyatnost. i Primenen., 69:2 (2024), 233–255
-
Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models
Probl. Peredachi Inf., 58:2 (2022), 48–65
-
On the asymptotics of the distribution of the exit time beyond a non-increasing boundary for a compound renewal process
Sib. Èlektron. Mat. Izv., 18:1 (2021), 9–26
-
Принцип больших уклонений для конечномерных распределений многомерных обобщенных процессов восстановления
Mat. Tr., 23:2 (2020), 148–176
-
Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition
Mat. Tr., 22:2 (2019), 106–133
-
Large deviation principle for multidimensional second compound renewal processes in the phase space
Sib. Èlektron. Mat. Izv., 16 (2019), 1478–1492
-
Large deviation principle for multidimensional first compound renewal processes in the phase space
Sib. Èlektron. Mat. Izv., 16 (2019), 1464–1477
-
The rate function and the fundamental function for multidimensional compound renewal process
Sib. Èlektron. Mat. Izv., 16 (2019), 1449–1463
-
Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process
Teor. Veroyatnost. i Primenen., 64:4 (2019), 625–641
-
Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III
Sib. Èlektron. Mat. Izv., 15 (2018), 528–553
-
Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II
Sib. Èlektron. Mat. Izv., 15 (2018), 503–527
-
Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I
Sib. Èlektron. Mat. Izv., 15 (2018), 475–502
-
Spatially decentralized protocols in random multiple access networks
Sib. Èlektron. Mat. Izv., 15 (2018), 135–152
-
Large deviation principle for integral functionals of a Markov process
Sib. Èlektron. Mat. Izv., 12 (2015), 639–650
© , 2026