RUS  ENG
Full version
PEOPLE

Logachov Artem Vasil'evich

Publications in Math-Net.Ru

  1. Moderate deviations principle for products of independent partial sums of independent random variables

    Mat. Zametki, 117:6 (2025),  879–897
  2. Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  914–926
  3. On the moderate deviation principle for $m$-dependent random variables with sublinear expectation

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  961–980
  4. Moderate deviation principles for the trajectories of inhomogeneous random walks

    Sibirsk. Mat. Zh., 64:1 (2023),  133–151
  5. Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models

    Probl. Peredachi Inf., 58:2 (2022),  48–65
  6. Exponential tightness for integral – type functionals of centered independent differently distributed random variables

    Sib. Èlektron. Mat. Izv., 19:1 (2022),  273–284
  7. Large deviation principles for the processes admitting embedded compound renewal processes

    Sibirsk. Mat. Zh., 63:1 (2022),  145–166
  8. Limit theorems for the maximal path weight in a directed graph on the line with random weights of edges

    Probl. Peredachi Inf., 57:2 (2021),  71–89
  9. The moderate deviations principle for the trajectories of compound renewal processes on the half – line

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1189–1200
  10. Moderate deviations principle for independent random variables under sublinear expectations

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  817–826
  11. Chebyshev-type inequalities and large deviation principles

    Teor. Veroyatnost. i Primenen., 66:4 (2021),  718–733
  12. Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line

    Probl. Peredachi Inf., 56:1 (2020),  63–79
  13. Local theorems for finite – dimensional increments of compound multidimensional arithmetic renewal processes with light tails

    Sib. Èlektron. Mat. Izv., 17 (2020),  1766–1786
  14. A remark on normalizations in a local large deviations principle for inhomogeneous birth – and – death process

    Sib. Èlektron. Mat. Izv., 17 (2020),  1258–1269
  15. Exponential chebyshev inequalities for random graphons and their applications

    Sibirsk. Mat. Zh., 61:4 (2020),  880–900
  16. A local large deviation principle for inhomogeneous birth-death processes

    Probl. Peredachi Inf., 54:3 (2018),  73–91
  17. Stochastic equations with discontinuous jump functions

    Mat. Tr., 20:1 (2017),  128–144
  18. Large deviation principle for integral functionals of a Markov process

    Sib. Èlektron. Mat. Izv., 12 (2015),  639–650
  19. Large deviation principle for processes with Poisson noise term

    Theory Stoch. Process., 18(34):2 (2012),  59–76


© Steklov Math. Inst. of RAS, 2026