RUS  ENG
Full version
PEOPLE

Landis Evgenii Mikhailovich

Publications in Math-Net.Ru

  1. Neumann problems in unbounded domains

    Dokl. Akad. Nauk, 343:1 (1995),  17–18
  2. On semilinear equations with discontinuous coefficients

    Differ. Uravn., 30:6 (1994),  1050–1056
  3. On the “dead zone” for semilinear degenerate elliptic inequalities

    Differ. Uravn., 29:3 (1993),  414–423
  4. Some unsolved problems in the theory of differential equations and mathematical physics

    Uspekhi Mat. Nauk, 44:4(268) (1989),  191–202
  5. Qualitative theory of second order linear partial differential equations

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 32 (1988),  99–215
  6. Semilinear equations of second order with nonnegative characteristic form

    Mat. Zametki, 44:4 (1988),  457–468
  7. On qualitative properties of solutions of a nonlinear equation of second order

    Mat. Sb. (N.S.), 135(177):3 (1988),  346–360
  8. Integral form of the flow theorem

    Mat. Zametki, 42:1 (1987),  73–78
  9. Criteria for solvability of the Dirichlet problem in the case of an unbounded boundary function

    Differ. Uravn., 22:5 (1986),  838–848
  10. Positive solutions of second order elliptic equations in unbounded domains

    Mat. Sb. (N.S.), 126(168):1 (1985),  133–139
  11. The dependence of classes of uniqueness of solution of the second initial-boundary value problem for the heat equation in an unbounded domain on the geometry of the domain

    Dokl. Akad. Nauk SSSR, 275:4 (1984),  790–793
  12. Trichotomy of solutions of the Neumann problem for the Laplace equation

    Dokl. Akad. Nauk SSSR, 275:4 (1984),  783–786
  13. The structure of nonessential sets with respect to the Dirichlet problem for second-order elliptic operators with discontinuous coefficients

    Tr. Mosk. Mat. Obs., 46 (1983),  124–135
  14. Uniqueness theorems for the solution of the Dirichlet problem for second-order elliptic equations

    Tr. Mosk. Mat. Obs., 42 (1981),  50–63
  15. On the behavior at infinity of solutions of elliptic equations that are periodic in all variables except one

    Dokl. Akad. Nauk SSSR, 250:4 (1980),  803–806
  16. Non-essential sets for the Dirichlet problem

    Uspekhi Mat. Nauk, 34:4(208) (1979),  197–198
  17. A theorem on the asymptotics of solutions of elliptic equations with coefficients periodic in all variables except one

    Dokl. Akad. Nauk SSSR, 235:6 (1977),  1253–1255
  18. A certain theorem of Phragmén–Lindelöf type for the solutions of elliptic equations

    Uspekhi Mat. Nauk, 30:5(185) (1975),  213
  19. The behavior of the solutions of higher order elliptic equations in unbounded domains

    Tr. Mosk. Mat. Obs., 31 (1974),  35–58
  20. Generalized analyticity and some related properties of solutions of elliptic and parabolic equations

    Uspekhi Mat. Nauk, 29:2(176) (1974),  190–206
  21. Behavior of the solution of a parabolic equation on a characteristic

    Mat. Zametki, 12:3 (1972),  257–262
  22. Some properties of quasilinear elliptic equations

    Dokl. Akad. Nauk SSSR, 197:6 (1971),  1268–1271
  23. Theorems of Phragmén–Lindelöf type for solutions of elliptic equations of high order

    Dokl. Akad. Nauk SSSR, 193:1 (1970),  32–35
  24. Necessary and sufficient conditions for the regularity of a boundary point for the Dirichlet problem for the heat equation

    Dokl. Akad. Nauk SSSR, 185:3 (1969),  517–520
  25. $s$-capacity and the behavior of the solution of a second order elliptic equation with discontinuous coefficients in the neighborhood of a boundary point

    Dokl. Akad. Nauk SSSR, 180:1 (1968),  25–28
  26. Harnack's inequality for second order elliptic equations of Cordes type

    Dokl. Akad. Nauk SSSR, 179:6 (1968),  1272–1275
  27. $s$-capacity and its applications to the study of solutions of a second-order elliptic equation with discontinuous coefficients

    Mat. Sb. (N.S.), 76(118):2 (1968),  186–213
  28. A new proof of E. De Giorgi's theorem

    Tr. Mosk. Mat. Obs., 16 (1967),  319–328
  29. A property of solutions of a parabolic equation

    Dokl. Akad. Nauk SSSR, 169:2 (1966),  262–265
  30. A three-spheres theorem

    Dokl. Akad. Nauk SSSR, 148:2 (1963),  277–279
  31. Some problems of the qualitative theory of second order elliptic equations (case of several independent variables)

    Uspekhi Mat. Nauk, 18:1(109) (1963),  3–62
  32. A generalization of the mean-value theorem for functions of several variables

    Dokl. Akad. Nauk SSSR, 146:4 (1962),  761–764
  33. An algorithm for organization of information

    Dokl. Akad. Nauk SSSR, 146:2 (1962),  263–266
  34. Some questions in the qualitative theory of elliptic and parabolic equations

    Uspekhi Mat. Nauk, 14:1(85) (1959),  21–85
  35. Relationship between the growth of the solution of a parabolic equation and the number of its sign alternations

    Dokl. Akad. Nauk SSSR, 123:5 (1958),  787–790
  36. Relationship between the growth of the solution of an elliptical equation and the number of its sign alternations

    Dokl. Akad. Nauk SSSR, 123:4 (1958),  602–605
  37. On the number of limit cycles of equation $\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$, in which $P$ and $Q$ are polynomials of degree $n$

    Dokl. Akad. Nauk SSSR, 113:4 (1957),  748–751
  38. О длине кривой

    Mat. Pros., Ser. 2, 1 (1957),  33–44
  39. On the number of limit cycles of the equation $\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials

    Mat. Sb. (N.S.), 43(85):2 (1957),  149–168
  40. On the number of limit cycles of the equation $\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials of 2nd degree

    Mat. Sb. (N.S.), 37(79):2 (1955),  209–250
  41. An example of nonuniqueness of solution of Cauchy's problem for a system of the form $\displaystyle\frac{\partial u_i}{\partial t}=\sum_jA_{ij}\frac{\partial u_j}{\partial x}+\sum_jB_{ij}u_j+f_i$ $(i,j=1,2)$

    Mat. Sb. (N.S.), 27(69):2 (1950),  319–323

  42. About Aleksandr Semenovich Kronrod

    Uspekhi Mat. Nauk, 56:5(341) (2001),  191–201
  43. Boris Fedorovich Bylov

    Differ. Uravn., 30:3 (1994),  542–546
  44. Anatolii Sergeevich Kalashnikov (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 49:4(298) (1994),  189–190
  45. Aleksandr Ivanovich Koshelev (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 42:5(257) (1987),  225–226
  46. Samarii Aleksandrovich Gal'pern (obituary)

    Uspekhi Mat. Nauk, 33:1(199) (1978),  195–197
  47. Samarii Aleksandrovich Gal'pern (on his seventieth birthday)

    Uspekhi Mat. Nauk, 30:1(181) (1975),  267–272
  48. Ivan Georgevič Petrovskiǐ (On his seventieth birthday)

    Differ. Uravn., 7:3 (1971),  553–564
  49. Aleksandr Grigor'evich Sigalov (obituary)

    Uspekhi Mat. Nauk, 25:5(155) (1970),  227–234
  50. Letter to the Editors

    Mat. Sb. (N.S.), 73(115):1 (1967),  160
  51. Corrections to the articles "On the number of limit cycles of the equations $\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials of $2$nd degree" and "On the number of limit cycles of the equation $\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials"

    Mat. Sb. (N.S.), 48(90):2 (1959),  253–255
  52. И. Г. Петровский и Е. М. Ландис. Число предельных циклов дифференциального уравнения $\frac{dy}{dx}=\frac{P_2(x,y)}{Q_2(x,y)}$

    Mat. Pros., Ser. 2, 1 (1957),  213–214


© Steklov Math. Inst. of RAS, 2026