|
|
Publications in Math-Net.Ru
-
Neumann problems in unbounded domains
Dokl. Akad. Nauk, 343:1 (1995), 17–18
-
On semilinear equations with discontinuous coefficients
Differ. Uravn., 30:6 (1994), 1050–1056
-
On the “dead zone” for semilinear degenerate elliptic inequalities
Differ. Uravn., 29:3 (1993), 414–423
-
Some unsolved problems in the theory of differential equations and mathematical physics
Uspekhi Mat. Nauk, 44:4(268) (1989), 191–202
-
Qualitative theory of second order linear partial differential equations
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 32 (1988), 99–215
-
Semilinear equations of second order with nonnegative characteristic form
Mat. Zametki, 44:4 (1988), 457–468
-
On qualitative properties of solutions of a nonlinear equation of second order
Mat. Sb. (N.S.), 135(177):3 (1988), 346–360
-
Integral form of the flow theorem
Mat. Zametki, 42:1 (1987), 73–78
-
Criteria for solvability of the Dirichlet problem in the case of an unbounded boundary function
Differ. Uravn., 22:5 (1986), 838–848
-
Positive solutions of second order elliptic equations in unbounded domains
Mat. Sb. (N.S.), 126(168):1 (1985), 133–139
-
The dependence of classes of uniqueness of solution of the second
initial-boundary value problem for the heat equation in an unbounded
domain on the geometry of the domain
Dokl. Akad. Nauk SSSR, 275:4 (1984), 790–793
-
Trichotomy of solutions of the Neumann problem for the Laplace
equation
Dokl. Akad. Nauk SSSR, 275:4 (1984), 783–786
-
The structure of nonessential sets with respect to the Dirichlet problem for second-order elliptic operators with discontinuous coefficients
Tr. Mosk. Mat. Obs., 46 (1983), 124–135
-
Uniqueness theorems for the solution of the Dirichlet problem for second-order elliptic equations
Tr. Mosk. Mat. Obs., 42 (1981), 50–63
-
On the behavior at infinity of solutions of elliptic equations that are periodic in all variables except one
Dokl. Akad. Nauk SSSR, 250:4 (1980), 803–806
-
Non-essential sets for the Dirichlet problem
Uspekhi Mat. Nauk, 34:4(208) (1979), 197–198
-
A theorem on the asymptotics of solutions of elliptic equations with coefficients periodic in all variables except one
Dokl. Akad. Nauk SSSR, 235:6 (1977), 1253–1255
-
A certain theorem of Phragmén–Lindelöf type for the solutions of elliptic equations
Uspekhi Mat. Nauk, 30:5(185) (1975), 213
-
The behavior of the solutions of higher order elliptic equations in unbounded domains
Tr. Mosk. Mat. Obs., 31 (1974), 35–58
-
Generalized analyticity and some related properties of solutions of elliptic and parabolic equations
Uspekhi Mat. Nauk, 29:2(176) (1974), 190–206
-
Behavior of the solution of a parabolic equation on a characteristic
Mat. Zametki, 12:3 (1972), 257–262
-
Some properties of quasilinear elliptic equations
Dokl. Akad. Nauk SSSR, 197:6 (1971), 1268–1271
-
Theorems of Phragmén–Lindelöf type for solutions of elliptic equations of high order
Dokl. Akad. Nauk SSSR, 193:1 (1970), 32–35
-
Necessary and sufficient conditions for the regularity of a boundary point for the Dirichlet problem for the heat equation
Dokl. Akad. Nauk SSSR, 185:3 (1969), 517–520
-
$s$-capacity and the behavior of the solution of a second order elliptic equation with discontinuous coefficients in the neighborhood of a boundary point
Dokl. Akad. Nauk SSSR, 180:1 (1968), 25–28
-
Harnack's inequality for second order elliptic equations of Cordes type
Dokl. Akad. Nauk SSSR, 179:6 (1968), 1272–1275
-
$s$-capacity and its applications to the study of solutions of a second-order elliptic equation with discontinuous coefficients
Mat. Sb. (N.S.), 76(118):2 (1968), 186–213
-
A new proof of E. De Giorgi's theorem
Tr. Mosk. Mat. Obs., 16 (1967), 319–328
-
A property of solutions of a parabolic equation
Dokl. Akad. Nauk SSSR, 169:2 (1966), 262–265
-
A three-spheres theorem
Dokl. Akad. Nauk SSSR, 148:2 (1963), 277–279
-
Some problems of the qualitative theory of second order elliptic equations (case of several independent variables)
Uspekhi Mat. Nauk, 18:1(109) (1963), 3–62
-
A generalization of the mean-value theorem for functions of several variables
Dokl. Akad. Nauk SSSR, 146:4 (1962), 761–764
-
An algorithm for organization of information
Dokl. Akad. Nauk SSSR, 146:2 (1962), 263–266
-
Some questions in the qualitative theory of elliptic and parabolic equations
Uspekhi Mat. Nauk, 14:1(85) (1959), 21–85
-
Relationship between the growth of the solution of a parabolic equation and the number of its sign alternations
Dokl. Akad. Nauk SSSR, 123:5 (1958), 787–790
-
Relationship between the growth of the solution of an elliptical equation and the number of its sign alternations
Dokl. Akad. Nauk SSSR, 123:4 (1958), 602–605
-
On the number of limit cycles of equation $\frac{dy}{dx}=\frac{P(x,y)}{Q(x,y)}$, in which $P$ and $Q$
are polynomials of degree $n$
Dokl. Akad. Nauk SSSR, 113:4 (1957), 748–751
-
О длине кривой
Mat. Pros., Ser. 2, 1 (1957), 33–44
-
On the number of limit cycles of the equation $\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials
Mat. Sb. (N.S.), 43(85):2 (1957), 149–168
-
On the number of limit cycles of the equation $\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials of 2nd degree
Mat. Sb. (N.S.), 37(79):2 (1955), 209–250
-
An example of nonuniqueness of solution of Cauchy's problem for a system of the form $\displaystyle\frac{\partial u_i}{\partial t}=\sum_jA_{ij}\frac{\partial u_j}{\partial x}+\sum_jB_{ij}u_j+f_i$ $(i,j=1,2)$
Mat. Sb. (N.S.), 27(69):2 (1950), 319–323
-
About Aleksandr Semenovich Kronrod
Uspekhi Mat. Nauk, 56:5(341) (2001), 191–201
-
Boris Fedorovich Bylov
Differ. Uravn., 30:3 (1994), 542–546
-
Anatolii Sergeevich Kalashnikov (on his sixtieth birthday)
Uspekhi Mat. Nauk, 49:4(298) (1994), 189–190
-
Aleksandr Ivanovich Koshelev (on his sixtieth birthday)
Uspekhi Mat. Nauk, 42:5(257) (1987), 225–226
-
Samarii Aleksandrovich Gal'pern (obituary)
Uspekhi Mat. Nauk, 33:1(199) (1978), 195–197
-
Samarii Aleksandrovich Gal'pern (on his seventieth birthday)
Uspekhi Mat. Nauk, 30:1(181) (1975), 267–272
-
Ivan Georgevič Petrovskiǐ (On his seventieth birthday)
Differ. Uravn., 7:3 (1971), 553–564
-
Aleksandr Grigor'evich Sigalov (obituary)
Uspekhi Mat. Nauk, 25:5(155) (1970), 227–234
-
Letter to the Editors
Mat. Sb. (N.S.), 73(115):1 (1967), 160
-
Corrections to the articles "On the number of limit cycles of the equations
$\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials of $2$nd degree" and
"On the number of limit cycles of the equation
$\dfrac{dy}{dx}=\dfrac{P(x,y)}{Q(x,y)}$, where $P$ and $Q$ are polynomials"
Mat. Sb. (N.S.), 48(90):2 (1959), 253–255
-
И. Г. Петровский и Е. М. Ландис. Число предельных циклов дифференциального уравнения $\frac{dy}{dx}=\frac{P_2(x,y)}{Q_2(x,y)}$
Mat. Pros., Ser. 2, 1 (1957), 213–214
© , 2026