|
|
Publications in Math-Net.Ru
-
Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph
Sib. Èlektron. Mat. Izv., 21:2 (2024), 914–926
-
Moderate deviation principles for the trajectories of inhomogeneous random walks
Sibirsk. Mat. Zh., 64:1 (2023), 133–151
-
Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models
Probl. Peredachi Inf., 58:2 (2022), 48–65
-
Exponential tightness for integral – type functionals of centered independent differently distributed random variables
Sib. Èlektron. Mat. Izv., 19:1 (2022), 273–284
-
Large deviation principles for the processes admitting embedded compound renewal processes
Sibirsk. Mat. Zh., 63:1 (2022), 145–166
-
Расширенный принцип больших уклонений для траекторий обобщенного процесса восстановления
Mat. Tr., 24:1 (2021), 142–174
-
Limit theorems for the maximal path weight in a directed graph on the line with random weights of edges
Probl. Peredachi Inf., 57:2 (2021), 71–89
-
The moderate deviations principle for the trajectories of compound renewal processes on the half – line
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1189–1200
-
Chebyshev-type inequalities and large deviation principles
Teor. Veroyatnost. i Primenen., 66:4 (2021), 718–733
-
Принцип больших уклонений для конечномерных распределений многомерных обобщенных процессов восстановления
Mat. Tr., 23:2 (2020), 148–176
-
Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line
Probl. Peredachi Inf., 56:1 (2020), 63–79
-
Local theorems for finite – dimensional increments of compound multidimensional arithmetic renewal processes with light tails
Sib. Èlektron. Mat. Izv., 17 (2020), 1766–1786
-
Exponential chebyshev inequalities for random graphons and their applications
Sibirsk. Mat. Zh., 61:4 (2020), 880–900
-
Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition
Mat. Tr., 22:2 (2019), 106–133
-
Large deviation principle for multidimensional second compound renewal processes in the phase space
Sib. Èlektron. Mat. Izv., 16 (2019), 1478–1492
-
Large deviation principle for multidimensional first compound renewal processes in the phase space
Sib. Èlektron. Mat. Izv., 16 (2019), 1464–1477
-
The rate function and the fundamental function for multidimensional compound renewal process
Sib. Èlektron. Mat. Izv., 16 (2019), 1449–1463
-
Local theorems for arithmetic compound renewal processes when Cramer's condition holds
Sib. Èlektron. Mat. Izv., 16 (2019), 21–41
-
Large deviations for processes on half-line: Random Walk and Compound Poisson Process
Sib. Èlektron. Mat. Izv., 16 (2019), 1–20
-
Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process
Teor. Veroyatnost. i Primenen., 64:4 (2019), 625–641
-
Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III
Sib. Èlektron. Mat. Izv., 15 (2018), 528–553
-
Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II
Sib. Èlektron. Mat. Izv., 15 (2018), 503–527
-
Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I
Sib. Èlektron. Mat. Izv., 15 (2018), 475–502
-
Integro-local limit theorems for compound renewal processes under Cramér's condition. II
Sibirsk. Mat. Zh., 59:4 (2018), 736–758
-
Integro-local limit theorems for compound renewal processes under Cramér's condition. I
Sibirsk. Mat. Zh., 59:3 (2018), 491–513
-
On a property of the Legendre transform
Mat. Tr., 20:1 (2017), 145–157
-
The extended large deviation principle for a process with independent increments
Sibirsk. Mat. Zh., 58:3 (2017), 660–672
-
The large deviation principle for a compound Poisson process
Mat. Tr., 19:2 (2016), 119–157
-
Large deviation principles for the finite-dimensional distributions of compound renewal processes
Sibirsk. Mat. Zh., 56:1 (2015), 36–64
-
Large deviation principles for trajectories of compound renewal processes. II
Teor. Veroyatnost. i Primenen., 60:3 (2015), 417–438
-
Large deviation principles for trajectories of compound renewal processes. I
Teor. Veroyatnost. i Primenen., 60:2 (2015), 227–247
-
Large deviation principles for sums of random vectors and the corresponding renewal functions in the inhomogeneous case
Mat. Tr., 17:2 (2014), 84–101
-
Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments
Mat. Tr., 16:2 (2013), 45–68
-
On the upper bound in the large deviation principle for sums of random vectors
Mat. Tr., 16:1 (2013), 121–140
-
Inequalities and principles of large deviations for the trajectories of processes with independent increments
Sibirsk. Mat. Zh., 54:2 (2013), 286–297
-
Moderately large deviation principles for trajectories of random walks and processes with independent increments
Teor. Veroyatnost. i Primenen., 58:4 (2013), 648–671
-
Large deviation principles for random walk trajectories. III
Teor. Veroyatnost. i Primenen., 58:1 (2013), 37–52
-
The expansion theorem for the deviation integral
Mat. Tr., 15:2 (2012), 127–145
-
On large deviation principles for random walk trajectories. II
Teor. Veroyatnost. i Primenen., 57:1 (2012), 3–34
-
Properties of a functional of trajectories which arises in studying the probabilities of large deviations of random walks
Sibirsk. Mat. Zh., 52:4 (2011), 777–795
-
On large deviation principles for random walk trajectories. I
Teor. Veroyatnost. i Primenen., 56:4 (2011), 627–655
-
Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories
Teor. Veroyatnost. i Primenen., 56:1 (2011), 3–29
-
On large deviation principles in metric spaces
Sibirsk. Mat. Zh., 51:6 (2010), 1251–1269
-
Local limit theorem for the first crossing time of a fixed level by a random walk
Mat. Tr., 12:2 (2009), 126–138
-
Integral and integro-local theorems for the sums of random variables with semiexponential distribution
Sib. Èlektron. Mat. Izv., 6 (2009), 251–271
-
Superlarge deviations for sums of random variables with arithmetical super-exponential distributions
Mat. Tr., 11:1 (2008), 81–112
-
An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions
Sibirsk. Mat. Zh., 49:4 (2008), 837–854
-
On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. II
Teor. Veroyatnost. i Primenen., 53:4 (2008), 641–664
-
On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I
Teor. Veroyatnost. i Primenen., 53:2 (2008), 336–344
-
Large deviation principle for partial sum processes of moving averages
Teor. Veroyatnost. i Primenen., 52:2 (2007), 209–239
-
Integro-local theorems for sums of independent random vectors in the series scheme
Mat. Zametki, 79:4 (2006), 505–521
-
Large deviations of the first passage time for a random walk with semiexponentially distributed jumps
Sibirsk. Mat. Zh., 47:6 (2006), 1323–1341
-
Integro-local and integral theorems for sums of random variables with semiexponential distributions
Sibirsk. Mat. Zh., 47:6 (2006), 1218–1257
-
On large and superlarge deviations of sums of independent random vectors under Cramér's condition. II
Teor. Veroyatnost. i Primenen., 51:4 (2006), 641–673
-
On large and superlarge deviations for sums of independent random vectors under the Cramer condition. I
Teor. Veroyatnost. i Primenen., 51:2 (2006), 260–294
-
A Local Theorem for the First Hitting Time of a Fixed Level by a Random Walk
Mat. Tr., 8:1 (2005), 43–70
-
Large Deviations of the Waiting Time for Tandem Queueing Systems
Mat. Tr., 5:2 (2002), 3–37
-
Random Walks in the Positive Quadrant. III. Constants in an integral and a local theorem
Mat. Tr., 4:1 (2001), 68–93
-
Large deviations for Markov chains in the positive quadrant
Uspekhi Mat. Nauk, 56:5(341) (2001), 3–116
-
Limit theorems in the boundary hitting problem for a multidimensional random walk
Sibirsk. Mat. Zh., 42:2 (2001), 289–317
-
Random Walks in the Positive Quadrant. II. Integral Theorem
Mat. Tr., 3:1 (2000), 48–118
-
Integro-local limit theorems including large deviations for sums of random vectors. II
Teor. Veroyatnost. i Primenen., 45:1 (2000), 5–29
-
Random Walks in the Positive Quadrant. I. Local Theorems
Mat. Tr., 2:2 (1999), 57–97
-
Itegro-local limit theorems including large deviations for sumsof random vectors
Teor. Veroyatnost. i Primenen., 43:1 (1998), 3–17
-
A probability inequality for obtaining lower bounds in the large deviation principle
Sibirsk. Mat. Zh., 37:4 (1996), 889–894
-
The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks
Sibirsk. Mat. Zh., 37:4 (1996), 745–782
-
Limit theorems for random processes
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 82 (1995), 5–194
-
Large deviations for the minimum point for a Gaussian random field
Trudy Inst. Mat. SO RAN, 20 (1993), 104–115
-
Large deviations and the testing of statistical hypotheses
Trudy Inst. Mat. SO RAN, 19 (1992), 2–220
-
A Limit Theorem for the Minimum and Minimum Point of a “Distorted” Function
Teor. Veroyatnost. i Primenen., 37:3 (1992), 548–554
-
Large Deviations and Statistical Invariance Principle
Teor. Veroyatnost. i Primenen., 37:1 (1992), 11–18
-
de Finetti-type results for $l_p$
Sibirsk. Mat. Zh., 32:4 (1991), 88–95
-
On probabilities of small deviations for random processes
Trudy Inst. Mat. Sib. Otd. AN SSSR, 13 (1989), 147–168
-
Small deviations and the law of the iterated logarithm in the Jain form for multidimensional random walks
Trudy Inst. Mat. Sib. Otd. AN SSSR, 5 (1985), 45–56
-
Large deviation probabilities for trajectories of random walks
Trudy Inst. Mat. Sib. Otd. AN SSSR, 3 (1984), 93–124
-
Moderately large deviations from an invariant measure
Trudy Inst. Mat. Sib. Otd. AN SSSR, 1 (1982), 90–97
-
Large deviations for the Wiener process
Trudy Inst. Mat. Sib. Otd. AN SSSR, 1 (1982), 25–50
-
The Fourier method for finding the asymptotic behavior of small deviations of a Wiener process
Sibirsk. Mat. Zh., 23:3 (1982), 161–174
-
Probabilities of large deviations in topological spaces. II
Sibirsk. Mat. Zh., 21:5 (1980), 12–26
-
On the law of iterated logarithm in Chung's form for functional spaces
Teor. Veroyatnost. i Primenen., 24:2 (1979), 399–407
-
Probabilities of large deviations in topological spaces. I
Sibirsk. Mat. Zh., 19:5 (1978), 988–1004
-
On the time of the first hit in a domain with a curved boundary
Sibirsk. Mat. Zh., 19:4 (1978), 824–841
-
On the first exit time out of a semigroup in $R^m$ for a random walk
Teor. Veroyatnost. i Primenen., 22:4 (1977), 837–844
-
Remarks on large deviations for the $\omega^2$-statistics
Teor. Veroyatnost. i Primenen., 22:1 (1977), 170–175
-
On the distribution of the first jump for a process with independent increments
Teor. Veroyatnost. i Primenen., 21:3 (1976), 486–496
-
Large deviations for trajectories of multidimensional random walks
Teor. Veroyatnost. i Primenen., 21:2 (1976), 309–323
-
Large deviations in the space of trajectories for sequences and processes with stationary increments
Sibirsk. Mat. Zh., 16:2 (1975), 314–327
-
Large deviations in the space $C(0,1)$ for sums that are defined on a finite Markov chain
Sibirsk. Mat. Zh., 15:1 (1974), 61–75
-
Small deviations in the sample function space
Teor. Veroyatnost. i Primenen., 19:4 (1974), 755–765
-
Absolute Estimates for Moments of Certain Boundary Functionals
Teor. Veroyatnost. i Primenen., 18:2 (1973), 350–357
-
On Zhulev's paper “On large deviations. II”
Teor. Veroyatnost. i Primenen., 51:2 (2006), 445–446
-
To the 75th birthday of A. A. Borovkov
Teor. Veroyatnost. i Primenen., 51:2 (2006), 257–259
-
Aleksandr Alekseevich Borovkov (on his 70th birthday)
Uspekhi Mat. Nauk, 56:5(341) (2001), 202–204
-
Aleksandr Alekseevich Borovkov (on the occasion of his seventieth birthday)
Sibirsk. Mat. Zh., 42:2 (2001), 243–248
© , 2026