RUS  ENG
Full version
PEOPLE

Mogul'skii Anatolii Al'fredovich

Publications in Math-Net.Ru

  1. Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  914–926
  2. Moderate deviation principles for the trajectories of inhomogeneous random walks

    Sibirsk. Mat. Zh., 64:1 (2023),  133–151
  3. Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models

    Probl. Peredachi Inf., 58:2 (2022),  48–65
  4. Exponential tightness for integral – type functionals of centered independent differently distributed random variables

    Sib. Èlektron. Mat. Izv., 19:1 (2022),  273–284
  5. Large deviation principles for the processes admitting embedded compound renewal processes

    Sibirsk. Mat. Zh., 63:1 (2022),  145–166
  6. Расширенный принцип больших уклонений для траекторий обобщенного процесса восстановления

    Mat. Tr., 24:1 (2021),  142–174
  7. Limit theorems for the maximal path weight in a directed graph on the line with random weights of edges

    Probl. Peredachi Inf., 57:2 (2021),  71–89
  8. The moderate deviations principle for the trajectories of compound renewal processes on the half – line

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1189–1200
  9. Chebyshev-type inequalities and large deviation principles

    Teor. Veroyatnost. i Primenen., 66:4 (2021),  718–733
  10. Принцип больших уклонений для конечномерных распределений многомерных обобщенных процессов восстановления

    Mat. Tr., 23:2 (2020),  148–176
  11. Extended large deviation principle for trajectories of processes with independent and stationary increments on the half-line

    Probl. Peredachi Inf., 56:1 (2020),  63–79
  12. Local theorems for finite – dimensional increments of compound multidimensional arithmetic renewal processes with light tails

    Sib. Èlektron. Mat. Izv., 17 (2020),  1766–1786
  13. Exponential chebyshev inequalities for random graphons and their applications

    Sibirsk. Mat. Zh., 61:4 (2020),  880–900
  14. Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition

    Mat. Tr., 22:2 (2019),  106–133
  15. Large deviation principle for multidimensional second compound renewal processes in the phase space

    Sib. Èlektron. Mat. Izv., 16 (2019),  1478–1492
  16. Large deviation principle for multidimensional first compound renewal processes in the phase space

    Sib. Èlektron. Mat. Izv., 16 (2019),  1464–1477
  17. The rate function and the fundamental function for multidimensional compound renewal process

    Sib. Èlektron. Mat. Izv., 16 (2019),  1449–1463
  18. Local theorems for arithmetic compound renewal processes when Cramer's condition holds

    Sib. Èlektron. Mat. Izv., 16 (2019),  21–41
  19. Large deviations for processes on half-line: Random Walk and Compound Poisson Process

    Sib. Èlektron. Mat. Izv., 16 (2019),  1–20
  20. Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process

    Teor. Veroyatnost. i Primenen., 64:4 (2019),  625–641
  21. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. III

    Sib. Èlektron. Mat. Izv., 15 (2018),  528–553
  22. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. II

    Sib. Èlektron. Mat. Izv., 15 (2018),  503–527
  23. Integro-local theorems for multidimensional compound renewal processes, when Cramer's condition holds. I

    Sib. Èlektron. Mat. Izv., 15 (2018),  475–502
  24. Integro-local limit theorems for compound renewal processes under Cramér's condition. II

    Sibirsk. Mat. Zh., 59:4 (2018),  736–758
  25. Integro-local limit theorems for compound renewal processes under Cramér's condition. I

    Sibirsk. Mat. Zh., 59:3 (2018),  491–513
  26. On a property of the Legendre transform

    Mat. Tr., 20:1 (2017),  145–157
  27. The extended large deviation principle for a process with independent increments

    Sibirsk. Mat. Zh., 58:3 (2017),  660–672
  28. The large deviation principle for a compound Poisson process

    Mat. Tr., 19:2 (2016),  119–157
  29. Large deviation principles for the finite-dimensional distributions of compound renewal processes

    Sibirsk. Mat. Zh., 56:1 (2015),  36–64
  30. Large deviation principles for trajectories of compound renewal processes. II

    Teor. Veroyatnost. i Primenen., 60:3 (2015),  417–438
  31. Large deviation principles for trajectories of compound renewal processes. I

    Teor. Veroyatnost. i Primenen., 60:2 (2015),  227–247
  32. Large deviation principles for sums of random vectors and the corresponding renewal functions in the inhomogeneous case

    Mat. Tr., 17:2 (2014),  84–101
  33. Conditional moderately large deviation principles for the trajectories of random walks and processes with independent increments

    Mat. Tr., 16:2 (2013),  45–68
  34. On the upper bound in the large deviation principle for sums of random vectors

    Mat. Tr., 16:1 (2013),  121–140
  35. Inequalities and principles of large deviations for the trajectories of processes with independent increments

    Sibirsk. Mat. Zh., 54:2 (2013),  286–297
  36. Moderately large deviation principles for trajectories of random walks and processes with independent increments

    Teor. Veroyatnost. i Primenen., 58:4 (2013),  648–671
  37. Large deviation principles for random walk trajectories. III

    Teor. Veroyatnost. i Primenen., 58:1 (2013),  37–52
  38. The expansion theorem for the deviation integral

    Mat. Tr., 15:2 (2012),  127–145
  39. On large deviation principles for random walk trajectories. II

    Teor. Veroyatnost. i Primenen., 57:1 (2012),  3–34
  40. Properties of a functional of trajectories which arises in studying the probabilities of large deviations of random walks

    Sibirsk. Mat. Zh., 52:4 (2011),  777–795
  41. On large deviation principles for random walk trajectories. I

    Teor. Veroyatnost. i Primenen., 56:4 (2011),  627–655
  42. Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories

    Teor. Veroyatnost. i Primenen., 56:1 (2011),  3–29
  43. On large deviation principles in metric spaces

    Sibirsk. Mat. Zh., 51:6 (2010),  1251–1269
  44. Local limit theorem for the first crossing time of a fixed level by a random walk

    Mat. Tr., 12:2 (2009),  126–138
  45. Integral and integro-local theorems for the sums of random variables with semiexponential distribution

    Sib. Èlektron. Mat. Izv., 6 (2009),  251–271
  46. Superlarge deviations for sums of random variables with arithmetical super-exponential distributions

    Mat. Tr., 11:1 (2008),  81–112
  47. An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions

    Sibirsk. Mat. Zh., 49:4 (2008),  837–854
  48. On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. II

    Teor. Veroyatnost. i Primenen., 53:4 (2008),  641–664
  49. On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I

    Teor. Veroyatnost. i Primenen., 53:2 (2008),  336–344
  50. Large deviation principle for partial sum processes of moving averages

    Teor. Veroyatnost. i Primenen., 52:2 (2007),  209–239
  51. Integro-local theorems for sums of independent random vectors in the series scheme

    Mat. Zametki, 79:4 (2006),  505–521
  52. Large deviations of the first passage time for a random walk with semiexponentially distributed jumps

    Sibirsk. Mat. Zh., 47:6 (2006),  1323–1341
  53. Integro-local and integral theorems for sums of random variables with semiexponential distributions

    Sibirsk. Mat. Zh., 47:6 (2006),  1218–1257
  54. On large and superlarge deviations of sums of independent random vectors under Cramér's condition. II

    Teor. Veroyatnost. i Primenen., 51:4 (2006),  641–673
  55. On large and superlarge deviations for sums of independent random vectors under the Cramer condition. I

    Teor. Veroyatnost. i Primenen., 51:2 (2006),  260–294
  56. A Local Theorem for the First Hitting Time of a Fixed Level by a Random Walk

    Mat. Tr., 8:1 (2005),  43–70
  57. Large Deviations of the Waiting Time for Tandem Queueing Systems

    Mat. Tr., 5:2 (2002),  3–37
  58. Random Walks in the Positive Quadrant. III. Constants in an integral and a local theorem

    Mat. Tr., 4:1 (2001),  68–93
  59. Large deviations for Markov chains in the positive quadrant

    Uspekhi Mat. Nauk, 56:5(341) (2001),  3–116
  60. Limit theorems in the boundary hitting problem for a multidimensional random walk

    Sibirsk. Mat. Zh., 42:2 (2001),  289–317
  61. Random Walks in the Positive Quadrant. II. Integral Theorem

    Mat. Tr., 3:1 (2000),  48–118
  62. Integro-local limit theorems including large deviations for sums of random vectors. II

    Teor. Veroyatnost. i Primenen., 45:1 (2000),  5–29
  63. Random Walks in the Positive Quadrant. I. Local Theorems

    Mat. Tr., 2:2 (1999),  57–97
  64. Itegro-local limit theorems including large deviations for sumsof random vectors

    Teor. Veroyatnost. i Primenen., 43:1 (1998),  3–17
  65. A probability inequality for obtaining lower bounds in the large deviation principle

    Sibirsk. Mat. Zh., 37:4 (1996),  889–894
  66. The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks

    Sibirsk. Mat. Zh., 37:4 (1996),  745–782
  67. Limit theorems for random processes

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 82 (1995),  5–194
  68. Large deviations for the minimum point for a Gaussian random field

    Trudy Inst. Mat. SO RAN, 20 (1993),  104–115
  69. Large deviations and the testing of statistical hypotheses

    Trudy Inst. Mat. SO RAN, 19 (1992),  2–220
  70. A Limit Theorem for the Minimum and Minimum Point of a “Distorted” Function

    Teor. Veroyatnost. i Primenen., 37:3 (1992),  548–554
  71. Large Deviations and Statistical Invariance Principle

    Teor. Veroyatnost. i Primenen., 37:1 (1992),  11–18
  72. de Finetti-type results for $l_p$

    Sibirsk. Mat. Zh., 32:4 (1991),  88–95
  73. On probabilities of small deviations for random processes

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 13 (1989),  147–168
  74. Small deviations and the law of the iterated logarithm in the Jain form for multidimensional random walks

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 5 (1985),  45–56
  75. Large deviation probabilities for trajectories of random walks

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 3 (1984),  93–124
  76. Moderately large deviations from an invariant measure

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 1 (1982),  90–97
  77. Large deviations for the Wiener process

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 1 (1982),  25–50
  78. The Fourier method for finding the asymptotic behavior of small deviations of a Wiener process

    Sibirsk. Mat. Zh., 23:3 (1982),  161–174
  79. Probabilities of large deviations in topological spaces. II

    Sibirsk. Mat. Zh., 21:5 (1980),  12–26
  80. On the law of iterated logarithm in Chung's form for functional spaces

    Teor. Veroyatnost. i Primenen., 24:2 (1979),  399–407
  81. Probabilities of large deviations in topological spaces. I

    Sibirsk. Mat. Zh., 19:5 (1978),  988–1004
  82. On the time of the first hit in a domain with a curved boundary

    Sibirsk. Mat. Zh., 19:4 (1978),  824–841
  83. On the first exit time out of a semigroup in $R^m$ for a random walk

    Teor. Veroyatnost. i Primenen., 22:4 (1977),  837–844
  84. Remarks on large deviations for the $\omega^2$-statistics

    Teor. Veroyatnost. i Primenen., 22:1 (1977),  170–175
  85. On the distribution of the first jump for a process with independent increments

    Teor. Veroyatnost. i Primenen., 21:3 (1976),  486–496
  86. Large deviations for trajectories of multidimensional random walks

    Teor. Veroyatnost. i Primenen., 21:2 (1976),  309–323
  87. Large deviations in the space of trajectories for sequences and processes with stationary increments

    Sibirsk. Mat. Zh., 16:2 (1975),  314–327
  88. Large deviations in the space $C(0,1)$ for sums that are defined on a finite Markov chain

    Sibirsk. Mat. Zh., 15:1 (1974),  61–75
  89. Small deviations in the sample function space

    Teor. Veroyatnost. i Primenen., 19:4 (1974),  755–765
  90. Absolute Estimates for Moments of Certain Boundary Functionals

    Teor. Veroyatnost. i Primenen., 18:2 (1973),  350–357

  91. On Zhulev's paper “On large deviations. II”

    Teor. Veroyatnost. i Primenen., 51:2 (2006),  445–446
  92. To the 75th birthday of A. A. Borovkov

    Teor. Veroyatnost. i Primenen., 51:2 (2006),  257–259
  93. Aleksandr Alekseevich Borovkov (on his 70th birthday)

    Uspekhi Mat. Nauk, 56:5(341) (2001),  202–204
  94. Aleksandr Alekseevich Borovkov (on the occasion of his seventieth birthday)

    Sibirsk. Mat. Zh., 42:2 (2001),  243–248


© Steklov Math. Inst. of RAS, 2026