|
|
Publications in Math-Net.Ru
-
On bipartite $Q$-polynomial graphs of diameter not greater than $5$
Vladikavkaz. Mat. Zh., 27:3 (2025), 21–27
-
On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$
Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022), 74–83
-
Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist
Vladikavkaz. Mat. Zh., 23:4 (2021), 68–76
-
Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$
Vladikavkaz. Mat. Zh., 22:2 (2020), 24–33
-
On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$
Sib. Èlektron. Mat. Izv., 16 (2019), 777–785
-
Distance-regular locally $pG_{s-6}(s,t)$-graphs of diameter greater than 3
Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018), 34–42
-
Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$
Algebra Logika, 56:6 (2017), 671–681
-
On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$
Sib. Èlektron. Mat. Izv., 14 (2017), 26–32
-
On automorphisms of a distance-regular graph with intersection array $\{125,96,1;1,48,125\}$
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:1 (2017), 13–20
-
Automorphisms of the Cameron's monster with parameters $(6138, 1197, 156, 252)$
Vladikavkaz. Mat. Zh., 19:1 (2017), 11–17
-
On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$
Sib. Èlektron. Mat. Izv., 13 (2016), 1040–1051
-
Automorphisms of a strongly regular graph with parameters $(1197,156,15,21)$
Vladikavkaz. Mat. Zh., 17:2 (2015), 5–11
© , 2026