RUS  ENG
Full version
PEOPLE

Bitkina Viktoriya Vasil'evna

Publications in Math-Net.Ru

  1. On bipartite $Q$-polynomial graphs of diameter not greater than $5$

    Vladikavkaz. Mat. Zh., 27:3 (2025),  21–27
  2. On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  74–83
  3. Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist

    Vladikavkaz. Mat. Zh., 23:4 (2021),  68–76
  4. Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$

    Vladikavkaz. Mat. Zh., 22:2 (2020),  24–33
  5. On automorphisms of a distance-regular graph with intersection array $\{44,30,5;1,3,40\}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  777–785
  6. Distance-regular locally $pG_{s-6}(s,t)$-graphs of diameter greater than 3

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  34–42
  7. Automorphism group of a distanceregular graph with intersection array $\{35,32,1;1,4,35\}$

    Algebra Logika, 56:6 (2017),  671–681
  8. On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,4,243\}$

    Sib. Èlektron. Mat. Izv., 14 (2017),  26–32
  9. On automorphisms of a distance-regular graph with intersection array $\{125,96,1;1,48,125\}$

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:1 (2017),  13–20
  10. Automorphisms of the Cameron's monster with parameters $(6138, 1197, 156, 252)$

    Vladikavkaz. Mat. Zh., 19:1 (2017),  11–17
  11. On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  1040–1051
  12. Automorphisms of a strongly regular graph with parameters $(1197,156,15,21)$

    Vladikavkaz. Mat. Zh., 17:2 (2015),  5–11


© Steklov Math. Inst. of RAS, 2026