RUS  ENG
Full version
PEOPLE

Kornev Andrey Alekseevich

Publications in Math-Net.Ru

  1. On the hybrid projection method to a stable manifold of a one-dimensional Burgers-type equation

    Num. Meth. Prog., 24:2 (2023),  170–181
  2. Solution to a linearized system of two-dimensional dynamics of viscous gas

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 5,  3–8
  3. Acceleration of transition to stationary mode for solutions to a system of viscous gas dynamics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 2,  14–21
  4. On some properties of the projection operator for a class of stabilization algorithms

    Num. Meth. Prog., 19:4 (2018),  431–438
  5. Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics. II

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 3,  3–8
  6. Acceleration of transition to stationary state for solutions to a linearized viscous gas dynamics system. I

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 1,  26–32
  7. Modeling the stabilization process on the boundary conditions for the quasi-two-dimensional fluid with the four vortex structure

    Mat. Model., 29:11 (2017),  99–110
  8. Numerical stabilization from the boundary for solutions of a model one-dimensional of a model one-Dimensional RBMK reactor

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3,  20–24
  9. To the problem of rod heating

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 6,  10–16
  10. On Asymptotic Contractions

    Mat. Zametki, 94:2 (2013),  218–224
  11. The structure of a stable manifold for fully implicit schemes

    Num. Meth. Prog., 14:1 (2013),  44–49
  12. On a new approach to asymptotic stabilization problems

    Zh. Vychisl. Mat. Mat. Fiz., 49:12 (2009),  2167–2181
  13. A Method of Graph Transformation Type for Numerical Simulation of Invariant Manifolds

    Trudy Mat. Inst. Steklova, 256 (2007),  237–251
  14. Numerical stability of one method of asymptotic stabilization

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 1,  33–36
  15. A method for the asymptotic stabilization to a given trajectory based on the initial data

    Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  37–51
  16. On approximate projecting on a stable manifold

    Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1580–1586
  17. On an iterative method for the construction the Hadamard mustaches

    Zh. Vychisl. Mat. Mat. Fiz., 44:8 (2004),  1346–1355
  18. Approximation of attractors of semidynamical systems

    Mat. Sb., 192:10 (2001),  19–32
  19. On new a priori estimates for modified Navier–Stokes equations in domains with nonsmooth boundaries in three-dimensional space

    Fundam. Prikl. Mat., 6:4 (2000),  1121–1129
  20. On the approximation of attractors of semidynamical systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 3,  24–28
  21. On a solution of an initial-boundary value problem for a nonlinear equation

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6,  100–102


© Steklov Math. Inst. of RAS, 2026