RUS  ENG
Full version
PEOPLE

Zakharov Sergei Viktorovich

Publications in Math-Net.Ru

  1. Calculation of the asymptotics of the solution of the inhomogeneous heat equation by the auxiliary parameter method

    Mat. Zametki, 117:6 (2025),  910–921
  2. Constructing the asymptotics of a solution of the heat equation from the known asymptotics of the initial function in three-dimensional space

    Mat. Sb., 215:1 (2024),  112–130
  3. Cauchy problem for a nonlinear Schrödinger equation with a large initial gradient in the weakly dispersive limit

    TMF, 219:1 (2024),  3–11
  4. Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity

    Funktsional. Anal. i Prilozhen., 57:4 (2023),  60–74
  5. Solution of a Parabolic Hamilton–Jacobi Type Equation Determined by a Simple Boundary Singularity

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:1 (2023),  77–90
  6. Matching of asymptotic solutions of a parabolic equation in the Cauchy problem with the multiscale evolution of a singularity

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  96–110
  7. Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time

    Ural Math. J., 8:1 (2022),  136–144
  8. The asymptotics of a solution of the multidimensional heat equation with unbounded initial data

    Ural Math. J., 7:1 (2021),  168–177
  9. Singular points and asymptotics in the singular Cauchy problem for the parabolic equation with a small parameter

    Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020),  841–852
  10. Asymptotics of the solution of the Cauchy problem for the evolutionary Airy equation at large times

    Funktsional. Anal. i Prilozhen., 53:3 (2019),  89–91
  11. Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types

    Ural Math. J., 5:1 (2019),  101–108
  12. Asymptotic solution of the multidimensional Burgers equation near a singularity

    TMF, 196:1 (2018),  42–49
  13. Two-parameter asymptotics in a bisingular Cauchy problem for a parabolic equation

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  94–103
  14. The Yekaterinburg heritage of Arlen Mikhailovich Il'in

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017),  42–66
  15. Modelling compression waves with a large initial gradient in the Korteweg–de Vries hydrodynamics

    Ufimsk. Mat. Zh., 9:1 (2017),  42–54
  16. Dispersive rarefaction wave with a large initial gradient

    Ural Math. J., 3:1 (2017),  33–43
  17. Asymptotic calculation of the heat distribution on a plane

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  93–99
  18. Singularities of $A$ and $B$ Types in Asymptotic Analysis of Solutions of a Parabolic Equation

    Funktsional. Anal. i Prilozhen., 49:4 (2015),  82–85
  19. Singular asymptotics in the Cauchy problem for a parabolic equation with a small parameter

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  97–104
  20. Justification of the asymptotics of solutions of the Navier–Stokes system for low Reynolds numbers

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  161–167
  21. Asymptotics of a generalized solution of the stationary Navier-Stokes system on a manifold diffeomorphic to a sphere

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  119–124
  22. Renormalization in the Cauchy problem for the Korteweg–de Vries equation

    TMF, 175:2 (2013),  173–177
  23. Regular asymptotics of a generalized solution of the stationary Navier–Stokes system

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:2 (2012),  108–113
  24. Renormalization in the Causy problem with two small parameters

    Vestnik Chelyabinsk. Gos. Univ., 2011, no. 14,  79–84
  25. The Cauchy problem for a quasilinear parabolic equation with a large initial gradient and low viscosity

    Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010),  699–706
  26. A construction of a solution to the Burgers equation with a specified asymptotics

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:2 (2007),  80–85
  27. Heat Distribution in an Infinite Rod

    Mat. Zametki, 80:3 (2006),  379–385
  28. Asymptotic solution of a Cauchy problem in a neighbourhood of a gradient catastrophe

    Mat. Sb., 197:6 (2006),  47–62
  29. The nucleation of a shock wave in the Cauchy problem for the Burgers equation

    Zh. Vychisl. Mat. Mat. Fiz., 44:3 (2004),  536–542
  30. From weak discontinuity to gradient catastrophe

    Mat. Sb., 192:10 (2001),  3–18


© Steklov Math. Inst. of RAS, 2026