RUS  ENG
Full version
PEOPLE

Baderko Elena Aleksandrovna

Publications in Math-Net.Ru

  1. Poisson potential for parabolic equation with Dini-continuous coefficients

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 5,  8–20
  2. Research activity of the Chair of Mathematical Analysis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 1,  61–65
  3. On the first initial boundary value problem for parabolic systems in a bounded domain with curved lateral boundaries

    Zh. Vychisl. Mat. Mat. Fiz., 65:10 (2025),  1662–1674
  4. First initial-boundary value problem for parabolic systems in a semibounded domain with curvilinear lateral boundary

    Zh. Vychisl. Mat. Mat. Fiz., 65:1 (2025),  23–35
  5. Uniqueness of solutions to initial-boundary value problems for parabolic systems with Dini-continuous coefficients in a semibounded domain on the plane

    Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023),  584–595
  6. Uniqueness of solutions of initial-boundary value problems for parabolic systems with Dini-continuous coefficients in domains on the plane

    Dokl. RAN. Math. Inf. Proc. Upr., 503 (2022),  26–29
  7. Smooth solution of the second initial-boundary value problem for a model parabolic system in a semibounded nonsmooth domain on the plane

    Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022),  391–402
  8. Uniqueness of solutions to initial boundary value problems for parabolic systems in plane bounded domains with nonsmooth lateral boundaries

    Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020),  5–8
  9. Mixed problem for a parabolic system on a plane and boundary integral equations

    CMFD, 64:1 (2018),  20–36
  10. On the uniqueness of the solutions of initial-boundary value problems for higher-order parabolic equations

    Differ. Uravn., 31:1 (1995),  63–70
  11. Simple-layer potential and the Dirichlet problem

    Dokl. Akad. Nauk, 339:5 (1994),  581–583
  12. Boundary value problems for a parabolic equation, and boundary integral equations

    Differ. Uravn., 28:1 (1992),  17–23
  13. A parabolic boundary value problem in a domain of simple form

    Differ. Uravn., 27:1 (1991),  17–22
  14. Smoothness of a $2m$-parabolic potential of a simple layer

    Differ. Uravn., 26:1 (1990),  3–10
  15. Solution of a problem with an oblique derivative for a parabolic equation by the method of boundary integral equations

    Differ. Uravn., 25:1 (1989),  14–20
  16. A method of potential theory in boundary value problems for $2m$-parabolic equations in a semibounded domain with a nonsmooth lateral boundary

    Differ. Uravn., 24:1 (1988),  3–9
  17. On an “almost” model boundary value problem for a higher-order parabolic equation

    Differ. Uravn., 23:1 (1987),  22–29
  18. Solution of the initial-boundary value problem for parabolic equations using the simple layer potential

    Dokl. Akad. Nauk SSSR, 283:1 (1985),  11–13
  19. Potentials for $2p$-parabolic equations

    Differ. Uravn., 19:1 (1983),  9–18
  20. On a singular problem

    Dokl. Akad. Nauk SSSR, 262:6 (1982),  1298–1300
  21. The solvability of boundary value problems for higher order parabolic equations in domains with curvilinear lateral boundaries

    Differ. Uravn., 12:10 (1976),  1781–1792
  22. On the solution of boundary value problems for $2p$-parabolic equations in domains with curvilinear lateral boundaries

    Dokl. Akad. Nauk SSSR, 225:1 (1975),  21–23
  23. On smoothness in Hölder spaces of potentials for $2p$-parabolic equations

    Dokl. Akad. Nauk SSSR, 211:5 (1973),  1017–1020
  24. Estimates of the fundamental potentials for parabolic equations of higher order. II

    Differ. Uravn., 9:9 (1973),  1646–1653
  25. Estimates of the fundamental potentials for parabolic equations of higher order. I

    Differ. Uravn., 9:8 (1973),  1438–1451
  26. The solution by the method of parabolic potentials of a certain heat conduction problem with concentrated thermal capacities

    Differ. Uravn., 8:7 (1972),  1225–1234
  27. An application of the method of parabolic potentials to the solution of a certain heat contact boundary value problem

    Differ. Uravn., 6:12 (1970),  2200–2213
  28. On the Dirichlet problem for degenerate elliptic systems

    Differ. Uravn., 5:1 (1969),  131–140

  29. Letter to the editor

    Differ. Uravn., 7:2 (1971),  378


© Steklov Math. Inst. of RAS, 2026