RUS  ENG
Full version
PEOPLE

Konovalov Aleksander Yur'evich

Publications in Math-Net.Ru

  1. Automation of artificial neural network architectures search

    Intelligent systems. Theory and applications, 27:4 (2023),  5–27
  2. Basic Predicate Calculus is Sound with Respect to a Modified Version of Strictly Primitive Recursive Realizability

    Mat. Zametki, 114:6 (2023),  827–847
  3. Basic Predicate Calculus is not Sound with Respect to the Strong Variant of Strictly Primitive Recursive Realizability

    Mat. Zametki, 111:2 (2022),  241–257
  4. General recursive realizability and intuitionistic logic

    Algebra Logika, 60:2 (2021),  137–144
  5. Basic logic is sound with respect to absolute $L$-realizability

    Intelligent systems. Theory and applications, 25:2 (2021),  49–54
  6. $ \Lambda$-expressions for primitive recursive functions in the Grzegorczyk hierarchy

    Intelligent systems. Theory and applications, 25:1 (2021),  107–125
  7. General recursive realizability and basic logic

    Algebra Logika, 59:5 (2020),  542–566
  8. The non-extensional constructive set theory is sound with respect to the sematics of the arithmetic realizability based on hyperarithmetic sorts

    Intelligent systems. Theory and applications, 24:1 (2020),  73–77
  9. Generalized realizability and the Markov principle

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 1,  60–64
  10. The intuitionistic set theory is not sound with respect to the constructive sematics based on hyperarithmetic sorts

    Intelligent systems. Theory and applications, 23:3 (2019),  131–134
  11. The Zermelo–Fraenkel set theory is not sound with respect to the constructive sematics based on hyperarithmetic sorts

    Intelligent systems. Theory and applications, 23:2 (2019),  159–163
  12. The criterion of the soundness and the comleteness of the classical logic with respect to the $V$-realizability

    Intelligent systems. Theory and applications, 23:1 (2019),  133–136
  13. Markov's principle is uniformly $V$-realizable in any $V$-enumerable domain

    Intelligent systems. Theory and applications, 23:1 (2019),  99–103
  14. Generalized realizability for extensions of arithmetic language

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 4,  50–54
  15. Absolute $L$-realizability and intuitionistic logic

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 2,  50–53
  16. Reports from the Automata Theory seminar

    Intelligent systems. Theory and applications, 22:4 (2018),  137–142
  17. All absolute arithmetically realizable predicate formulas are classically true

    Intelligent systems. Theory and applications, 22:4 (2018),  111–114
  18. The $V$-realizability for $L$-formulas coincides with the classical semantics if $V$ contains all $L$-definable functions

    Intelligent systems. Theory and applications, 22:3 (2018),  127–130
  19. The intuitionistic logic is not sound with $L$-realizability

    Intelligent systems. Theory and applications, 22:3 (2018),  41–44
  20. The semantics of realizability for the constructive set theory based on hyperarithmetical predicates

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 3,  59–62
  21. Arithmetical realizability and primitive recursive realizability

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 4,  60–64
  22. Arithmetical realizability and basic logic

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1,  52–56
  23. On Hyperarithmetical Realizability

    Mat. Zametki, 98:5 (2015),  725–746


© Steklov Math. Inst. of RAS, 2026