RUS  ENG
Full version
PEOPLE

Shlosman Semen Bensionovich

Publications in Math-Net.Ru

  1. The miracle of integer eigenvalues

    Funktsional. Anal. i Prilozhen., 58:2 (2024),  100–114
  2. Classical and Quantum Dynamics of a Particle in a Narrow Angle

    Regul. Chaotic Dyn., 24:6 (2019),  704–716
  3. Critical configurations of solid bodies and the Morse theory of MIN functions

    Uspekhi Mat. Nauk, 74:4(448) (2019),  59–86
  4. Plane Partitions and Their Pedestal Polynomials

    Mat. Zametki, 103:5 (2018),  745–749
  5. Propagation of chaos and Poisson hypothesis

    Probl. Peredachi Inf., 54:3 (2018),  102–111
  6. Topological Tverberg Theorem: the proofs and the counterexamples

    Uspekhi Mat. Nauk, 73:2(440) (2018),  175–182
  7. Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber

    TMF, 197:2 (2018),  269–278
  8. Poisson hypothesis for open networks at low load

    Mosc. Math. J., 17:1 (2017),  145–160
  9. Queueing networks with mobile servers: the mean-field approach

    Probl. Peredachi Inf., 52:2 (2016),  86–110
  10. Can reliable memory be composed of error-prone elements?

    Avtomat. i Telemekh., 2013, no. 10,  15–22
  11. Phase transitions in the queuing networks and the violation of the Poisson hypothesis

    Mosc. Math. J., 8:1 (2008),  159–180
  12. Self-averaging Property of Queueing Systems

    Probl. Peredachi Inf., 42:4 (2006),  91–103
  13. Poisson hypothesis for information networks. II

    Mosc. Math. J., 5:4 (2005),  927–959
  14. Poisson hypothesis for information networks. I

    Mosc. Math. J., 5:3 (2005),  679–704
  15. Poisson Hypothesis: Combinatorial Aspect

    Probl. Peredachi Inf., 41:3 (2005),  51–57
  16. Applications of the Wulff construction to the number theory

    Zap. Nauchn. Sem. POMI, 292 (2002),  153–160
  17. Rigidity of the critical phases on a Cayley tree

    Mosc. Math. J., 1:3 (2001),  345–363
  18. Random lattices and random sphere packings: typical properties

    Mosc. Math. J., 1:1 (2001),  73–89
  19. The Wulff construction in statistical mechanics and combinatorics

    Uspekhi Mat. Nauk, 56:4(340) (2001),  97–128
  20. Gibbsian description of “non-Gibbsian” fields

    Uspekhi Mat. Nauk, 52:2(314) (1997),  45–58
  21. Gaussian behavior of the critical Ising model in a dimension $d>4$

    Dokl. Akad. Nauk SSSR, 303:6 (1988),  1350–1352
  22. Gauge-invariant specification of gauge fields

    TMF, 77:1 (1988),  77–87
  23. Relations Between Cumulants of Random Fields with an Attraction

    Teor. Veroyatnost. i Primenen., 33:4 (1988),  694–705
  24. Estimates for the Ursell functions for fields with attraction

    Dokl. Akad. Nauk SSSR, 294:6 (1987),  1354–1357
  25. Representation by random graphs and signs of the Ursell functions

    Dokl. Akad. Nauk SSSR, 292:5 (1987),  1074–1077
  26. Low-temperature phase transitions in systems with one ground state

    TMF, 70:3 (1987),  462–468
  27. The method of reflection positivity in the mathematical theory of first-order phase transitions

    Uspekhi Mat. Nauk, 41:3(249) (1986),  69–111
  28. Unusual analytic properties of some lattice models: Complement of Lee–Yang theory

    TMF, 69:2 (1986),  273–278
  29. Uniqueness and half-space nonuniqueness of gibbs states in Czech models

    TMF, 66:3 (1986),  430–444
  30. Reflection positivity and models with noncompact spin

    TMF, 59:1 (1984),  154–160
  31. Limit theorems of probability theory for compact topological groups

    Teor. Veroyatnost. i Primenen., 25:3 (1980),  614–619
  32. Correlation inequalities and their applications

    Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern., 16 (1979),  5–37
  33. Decrease of correlations in two-dimensional models with continuous symmetry group

    TMF, 37:3 (1978),  427–430
  34. Absence of continuous symmetry breaking in two-dimensional models of statistical physics

    TMF, 33:1 (1977),  86–94
  35. Limit theorems of probability theory on compact Lie groups

    Dokl. Akad. Nauk SSSR, 222:2 (1975),  306–308
  36. Smooth structures on Poincaré complexes

    Izv. Akad. Nauk SSSR Ser. Mat., 37:4 (1973),  917–930
  37. Subvarieties of codimensionality one and of simple homotopic type

    Mat. Zametki, 12:2 (1972),  167–175

  38. Igor' Moiseevich Krichever (on his 70th birthday)

    Uspekhi Mat. Nauk, 76:4(460) (2021),  183–193
  39. Robert Adolphovich Minlos

    Mosc. Math. J., 11:2 (2011),  403–404
  40. Igor Krichever

    Mosc. Math. J., 10:4 (2010),  833–834
  41. Sabir Medgidovich Gusein-Zade

    Mosc. Math. J., 10:4 (2010),  831–832
  42. Mikhail A. Tsfasman

    Mosc. Math. J., 5:4 (2005),  745–746
  43. Yakov G. Sinai

    Mosc. Math. J., 5:3 (2005),  497–498
  44. Serge G. Vlăduţ

    Mosc. Math. J., 4:2 (2004),  531–532
  45. Robert A. Minlos

    Mosc. Math. J., 1:3 (2001),  305–306
  46. Robert Adol'fovich Minlos (on his 70th birthday)

    Uspekhi Mat. Nauk, 56:4(340) (2001),  173–176
  47. Fridrikh Israilevich Karpelevich (obituary)

    Uspekhi Mat. Nauk, 56:1(337) (2001),  147–152
  48. In Memory of Roland L'vovich Dobrushin

    Probl. Peredachi Inf., 32:3 (1996),  3–24
  49. Roland L'vovich Dobrushin (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 44:6(270) (1989),  161–162


© Steklov Math. Inst. of RAS, 2026