RUS  ENG
Full version
PEOPLE

Pinus Aleksandr Georgievich

Publications in Math-Net.Ru

  1. Abstract relations between functional clones

    Algebra Logika, 60:4 (2021),  425–432
  2. On spaces of functional clones

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  901–904
  3. Neighborhoods and isolated points in spaces of functional clones on sets

    Algebra Logika, 59:3 (2020),  334–343
  4. The algebraic sets of broad algebras

    Bulletin of Irkutsk State University. Series Mathematics, 32 (2020),  94–100
  5. Algebraic functions and inner homomorphisms of universal algebras

    Sibirsk. Mat. Zh., 61:3 (2020),  669–673
  6. Lattices of boundedly axiomatizable $\forall$-subclasses of $\forall$-classes of universal algebras

    Algebra Logika, 58:3 (2019),  363–369
  7. On the representation of the lattices of the algebraic sets of the universal algebras

    Bulletin of Irkutsk State University. Series Mathematics, 29 (2019),  98–106
  8. On topologization of direct limits of retractive spectors and their completion

    Sib. Èlektron. Mat. Izv., 16 (2019),  1345–1350
  9. On the elementary geometry of universal algebras and on the equivalence of clones relative to this geometry

    Sib. Èlektron. Mat. Izv., 15 (2018),  332–337
  10. Once more on the direct and inverse limits of retractive spectra

    Sib. J. Pure and Appl. Math., 18:3 (2018),  60–63
  11. Fragments of functional clones

    Algebra Logika, 56:4 (2017),  477–485
  12. On algebraic properties of universal algebras

    Sib. Èlektron. Mat. Izv., 14 (2017),  156–162
  13. On direct and inverse limits of retractive spectra

    Sibirsk. Mat. Zh., 58:6 (2017),  1372–1377
  14. On the logical equivalence of functional clones

    Sibirsk. Mat. Zh., 58:4 (2017),  864–869
  15. Algebraically equivalent clones

    Algebra Logika, 55:6 (2016),  760–768
  16. Dimension of functional clons, metric on its collection

    Sib. Èlektron. Mat. Izv., 13 (2016),  366–374
  17. Ihm-admissible and Ihm-forbidden quasiorders on sets

    Sibirsk. Mat. Zh., 57:5 (2016),  1109–1113
  18. $n$-Algebraic complete algebras, pseudodirect product and operator of algebraic closure on the subsets of universal algebras

    Sib. J. Pure and Appl. Math., 16:4 (2016),  97–102
  19. Algebras with identical algebraic sets

    Algebra Logika, 54:4 (2015),  493–502
  20. Ihm-quasiorder and derived structures of universal algebras; 1-algebraic complete algebras

    Bulletin of Irkutsk State University. Series Mathematics, 12 (2015),  72–78
  21. On some of logical closures on universal algebras

    Sib. Èlektron. Mat. Izv., 12 (2015),  698–703
  22. On the quasiorder induced by inner homomorphisms and the operator of algebraic closure

    Sibirsk. Mat. Zh., 56:3 (2015),  629–636
  23. Definable functions of universal algebras and definable equivalence between algebras

    Algebra Logika, 53:2 (2014),  256–270
  24. Some Applications on the Second Order Logic Language in the Universal Algebra

    Bulletin of Irkutsk State University. Series Mathematics, 7 (2014),  79–84
  25. The classical Galous closure for universal algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 2,  47–53
  26. On the universal algebras with identical derived objects (congruences, algebraic sets)

    Sib. Èlektron. Mat. Izv., 11 (2014),  752–758
  27. Hamiltonian closure on universal algebras

    Sibirsk. Mat. Zh., 55:3 (2014),  610–616
  28. On Definable and Autostable Congruences

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:2 (2014),  63–68
  29. Rational equivalence of algebras, its clone generalizations, and clone categoricity

    Sibirsk. Mat. Zh., 54:3 (2013),  673–688
  30. On the Geometrically Complete Varieties of Algebras

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:3 (2013),  90–95
  31. Geometric and conditional geometric equivalences of algebras

    Algebra Logika, 51:6 (2012),  766–771
  32. Semilattices of definable subalgebras. II

    Algebra Logika, 51:2 (2012),  276–284
  33. The algebraic and logical geometries of universal algebras (a unified approach)

    Fundam. Prikl. Mat., 17:1 (2012),  189–204
  34. The point-termal complete clones of functions and the lattices of lattices of all subalgebras of algebras with fixed basic set

    Bulletin of Irkutsk State University. Series Mathematics, 5:3 (2012),  94–103
  35. Implicit algebraic geometry of universal algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 5,  40–45
  36. Implicitly equivalent universal algebras

    Sibirsk. Mat. Zh., 53:5 (2012),  1077–1090
  37. New algebraic invariants for definable subsets in universal algebra

    Algebra Logika, 50:2 (2011),  209–230
  38. Implicit $\overline{\mathcal{K}}$-varieties

    Bulletin of Irkutsk State University. Series Mathematics, 4:3 (2011),  110–115
  39. On $\infty$-quasivarieties

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 8,  40–45
  40. Conditional geometric scales of discriminator varieties

    Sibirsk. Mat. Zh., 52:3 (2011),  650–654
  41. On the Galois-Correspondence between Implicit Operations and Categories of Universal Algebras

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:3 (2011),  146–152
  42. Termal and polynomial endomorphisms of universal algebras

    Algebra Logika, 49:1 (2010),  18–25
  43. On the scale of local computability potentials of algebras

    Fundam. Prikl. Mat., 15:1 (2009),  135–145
  44. Geometric scales for varieties of algebras and quasi-identities

    Mat. Tr., 12:2 (2009),  160–169
  45. Implicit operations on the categories of universal algebras

    Sibirsk. Mat. Zh., 50:1 (2009),  146–153
  46. On the Algebras Which Are Isomorphic of Any Nonempty Subalgebra

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:3 (2009),  115–119
  47. On the Elementary Theory of the Scale of the Computability Potentials of all Finite Algebras

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009),  88–93
  48. Automorphisms, definable relations, and covers of elements of the computability potential scale for all finite algebras

    Algebra Logika, 47:4 (2008),  464–474
  49. Elementary equivalence for the lattices of subalgebras and automorphism groups of free algebras

    Sibirsk. Mat. Zh., 49:4 (2008),  865–869
  50. The computability potential scale of all finite algebras

    Sibirsk. Mat. Zh., 48:3 (2007),  668–673
  51. Universal algebras and ideals of the scale of computability potentials of all finite algebras

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007),  88–94
  52. Definability by formulas of derived objects on universal algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 3,  36–40
  53. On the subsemilattices of first-order definable and openly first-order definable congruences of the congruence lattice of a universal algebra

    Sibirsk. Mat. Zh., 47:4 (2006),  865–872
  54. Positively conditional pseudovarieties and implicit operations on them

    Sibirsk. Mat. Zh., 47:2 (2006),  372–382
  55. Semilattices of Definable Subalgebras

    Algebra Logika, 44:4 (2005),  474–482
  56. Elementary classification and decidability of theories of derived structures

    Uspekhi Mat. Nauk, 60:3(363) (2005),  3–40
  57. Computability potential scales of $n$-element algebras with restrictions on arity

    Sibirsk. Mat. Zh., 46:1 (2005),  177–184
  58. Elementary Equivalence of Derived Structures of Free Semigroups, Unars, and Groups

    Algebra Logika, 43:6 (2004),  730–748
  59. On the implicit conditional operations defined on pseudouniversal classes

    Fundam. Prikl. Mat., 10:4 (2004),  171–182
  60. Proper automorphisms of universal algebras

    Sibirsk. Mat. Zh., 45:6 (2004),  1329–1337
  61. The scales of computability potentials: results and problems

    Fundam. Prikl. Mat., 9:3 (2003),  145–164
  62. On automorphisms of computability potential scales for $n$-element algebras

    Sibirsk. Mat. Zh., 44:3 (2003),  606–621
  63. Rational and Conditional-Rational Equivalent Algebras

    Algebra Logika, 41:3 (2002),  326–334
  64. On the diagrams of classes of conditionally termal functions

    Fundam. Prikl. Mat., 8:4 (2002),  1099–1109
  65. On the elementary equivalence of derived structures of free lattices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 5,  44–47
  66. On the length of scales of computability potentials for $n$-element algebras

    Sibirsk. Mat. Zh., 43:4 (2002),  858–863
  67. On independence of the relations of epimorphy and embeddability on the variety of all lattices

    Sibirsk. Mat. Zh., 43:2 (2002),  438–441
  68. Inner Homomorphisms and Positive-Conditional Terms

    Algebra Logika, 40:2 (2001),  158–173
  69. On faithful conditional identities and conditionally complete conditional varieties

    Fundam. Prikl. Mat., 7:3 (2001),  839–847
  70. On the definability of finite algebras by derived categories

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 4,  38–42
  71. Conditional terms and their applications in algebra and computation theory

    Uspekhi Mat. Nauk, 56:4(340) (2001),  35–72
  72. Elementary equivalence of lattices of subalgebras of free algebras

    Algebra Logika, 39:5 (2000),  595–601
  73. On functions commuting with semigroups of transformations of algebras

    Sibirsk. Mat. Zh., 41:6 (2000),  1409–1418
  74. Invariants of the rational equivalence relation

    Sibirsk. Mat. Zh., 41:2 (2000),  430–436
  75. On conditionally rationally equivalent discriminator varieties

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 8,  54–59
  76. On elementary theories of generic multi-algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 4,  39–43
  77. $n$-elementary embeddability and $n$-conditional terms

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 1,  36–40
  78. Conditional topology and definable functions on universal algebras

    Sibirsk. Mat. Zh., 40:6 (1999),  1305–1312
  79. Calculus of conditional identities, and conditionally rational equivalence

    Algebra Logika, 37:4 (1998),  432–459
  80. Locally finite Jónsson conditional varieties and conditionally rational equivalence

    Sibirsk. Mat. Zh., 39:4 (1998),  942–948
  81. On elementary theories of semilattices of partial orders on sets

    Sibirsk. Mat. Zh., 39:3 (1998),  590–592
  82. On algebras that are conditionally rationally equivalent to semilattices and Boolean algebras

    Sibirsk. Mat. Zh., 39:1 (1998),  121–128
  83. On the $\aleph$-identity of epimorphy and embeddability relations on quasivarieties

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 11,  52–60
  84. On lattices in skeletons of embeddability of varieties

    Sibirsk. Mat. Zh., 38:5 (1997),  1115–1119
  85. Characterization of conditionally term functions

    Sibirsk. Mat. Zh., 38:1 (1997),  161–165
  86. Letter to the editors: “On skeletons of embeddability of nonlocally finite discriminator varieties with a poor algebra” [Algebra i Logika 33 (1994), no. 1, 90–103, 105; MR1287012]

    Algebra Logika, 35:6 (1996),  746
  87. On rich and poor algebras

    Algebra Logika, 35:6 (1996),  709–718
  88. On the property of being a semilattice for countable imbeddability skeletons of discriminator varieties

    Trudy Inst. Mat. SO RAN, 30 (1996),  119–125
  89. On lattices of quasi-orders on universal algebras

    Algebra Logika, 34:3 (1995),  327–328
  90. On skeletons of embeddability of nonlocally finite discriminator varieties with a poor algebra

    Algebra Logika, 33:1 (1994),  90–103
  91. On the number of the epimorphy skeletons of varieties

    Sibirsk. Mat. Zh., 35:2 (1994),  424–427
  92. On algebras that are close to simple

    Algebra Logika, 32:5 (1993),  537–555
  93. Quasi-orders on universal algebras

    Algebra Logika, 32:3 (1993),  308–325
  94. Vopěnka's principle and skeletons of varieties

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 3,  68–71
  95. On coverings in epimorphism skeletons of varieties

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 1,  48–55
  96. On $p$-pseudo-simple algebras

    Algebra Logika, 31:6 (1992),  637–654
  97. Varieties whose skeletons are lattices

    Algebra Logika, 31:1 (1992),  74–82
  98. Boolean constructions in universal algebra

    Uspekhi Mat. Nauk, 47:4(286) (1992),  145–180
  99. Countable skeletons of finitely generated discriminant varieties

    Sibirsk. Mat. Zh., 33:2 (1992),  190–195
  100. Löwenheim numbers for skeletons of varieties of Boolean algebras

    Algebra Logika, 30:3 (1991),  333–354
  101. Löwenheim numbers for skeletons of varieties

    Algebra Logika, 30:2 (1991),  214–225
  102. The word problem for discriminant varieties

    Sibirsk. Mat. Zh., 32:6 (1991),  128–130
  103. Elementary theory of skeletons of embeddability of discriminant varieties

    Sibirsk. Mat. Zh., 32:5 (1991),  126–131
  104. Intervals and chains in epimorphism skeletons of congruence-distributive varieties

    Algebra Logika, 29:2 (1990),  207–219
  105. Cartesian skeletons of congruence-distributive varieties

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 6,  47–51
  106. Rich countable epimorphism skeletons of discrimator varieties

    Sibirsk. Mat. Zh., 31:3 (1990),  125–134
  107. Varieties with a simple countable skeleton of embeddability

    Sibirsk. Mat. Zh., 31:1 (1990),  127–134
  108. Countable skeletons of embeddability of discriminator varieties

    Algebra Logika, 28:5 (1989),  597–607
  109. On the number of discriminant varieties that are incomparable in countable epimorphism skeletons

    Algebra Logika, 28:3 (1989),  311–323
  110. Elementary theory of epimorphism skeletons of congruence-distributive varieties

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 7,  73–76
  111. Coverings in epimorphism skeletons of varieties of algebras

    Algebra Logika, 27:3 (1988),  316–326
  112. Congruence-distributive varieties of algebras

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 26 (1988),  45–83
  113. Elementary equivalence of lattices of partitions

    Sibirsk. Mat. Zh., 29:3 (1988),  211–212
  114. Simple countable epimorphism skeletons of congruence-distributive varieties

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 11,  67–70
  115. Restricted theories of lattices of subalgebras of some Horn classes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 11,  79–81
  116. Imbeddability and epimorphism relations on congruence-distributive varieties

    Algebra Logika, 24:5 (1985),  588–607
  117. Applications of Boolean powers of algebraic systems

    Sibirsk. Mat. Zh., 26:3 (1985),  117–125
  118. The operation of Cartesian product

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 8,  51–53
  119. Uniqueness of linear extensions of partial orders

    Sibirsk. Mat. Zh., 24:4 (1983),  131–137
  120. A calculus with an elementary equivalence quantifier

    Sibirsk. Mat. Zh., 24:3 (1983),  136–141
  121. Full imbeddings of categories of algebraic systems and determinability of a model by the semigroup of its endomorphisms

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 1,  80–83
  122. The spectrum of rigid systems of Horn classes

    Sibirsk. Mat. Zh., 22:5 (1981),  153–157
  123. Constructivization of Boolean algebras

    Sibirsk. Mat. Zh., 22:4 (1981),  169–175
  124. A characterization of the category of linearly ordered sets

    Sibirsk. Mat. Zh., 22:3 (1981),  156–161
  125. Existence of $\alpha$-dimension of partial orders

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 5,  32–36
  126. Weak commutativity of scattered summation of linear orders

    Sibirsk. Mat. Zh., 21:2 (1980),  155–159
  127. Eliminability of the quantifiers $Q_0$ and $Q_1$ on symmetric groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 12,  45–47
  128. Collections of pairwise incomparable linear orders of a given degree of dispersal

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 7,  62–65
  129. A certain enumeration of one-place predicates

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 1,  54–60
  130. The Hanf number for a calculus with the Härtig quantifier

    Sibirsk. Mat. Zh., 20:2 (1979),  440–441
  131. Elementary equivalence of topological spaces

    Sibirsk. Mat. Zh., 20:2 (1979),  433–439
  132. Decidability problems of extended theories

    Uspekhi Mat. Nauk, 33:2(200) (1978),  49–84
  133. The cardinality of models of the theories of the calculus with the Härtig quantifier

    Sibirsk. Mat. Zh., 19:6 (1978),  1349–1356
  134. Theory of Boolean algebras in a calculus with the quantifier “there exist infinitely many”

    Sibirsk. Mat. Zh., 17:6 (1976),  1417–1421
  135. Effective linear orders

    Sibirsk. Mat. Zh., 16:6 (1975),  1246–1254
  136. Countable indecomposable dispersed order types

    Mat. Zametki, 13:1 (1973),  113–120
  137. Lexicographic powers of totally ordered sets

    Sibirsk. Mat. Zh., 14:3 (1973),  684–690
  138. The number of pairwise incomparable order types

    Sibirsk. Mat. Zh., 14:1 (1973),  229–234
  139. The embedding of linearly ordered sets

    Mat. Zametki, 11:1 (1972),  83–88
  140. The theory of convex subsets

    Sibirsk. Mat. Zh., 13:1 (1972),  218–224
  141. A remark on the paper by Ju. M. Važenin: “Elementary properties of transformation semigroups of ordered sets”

    Algebra Logika, 10:3 (1971),  327–328

  142. In memory of Valeriy Matveevich Kopytov

    Algebra Logika, 61:6 (2022),  I–IV
  143. Evgenii Andreevich Palyutin (1945–2018)

    Sib. Èlektron. Mat. Izv., 16 (2019),  1–10
  144. Letter to the editors: “The number of pairwise incomparable order types”' (Sibirsk. Mat. Z. 14 (1973), no. 1, 229–234)

    Sibirsk. Mat. Zh., 17:3 (1976),  708
  145. Letter to the editor

    Mat. Zametki, 12:4 (1972),  500


© Steklov Math. Inst. of RAS, 2026