RUS  ENG
Full version
PEOPLE

Grigor'ev Dmitrii Yur'evich

Publications in Math-Net.Ru

  1. Tropical Combinatorial Nullstellensatz and sparse polynomials

    Found. Comput. Math., 20 (2020),  753–781
  2. Tropical effective primary and dual nullstellensätze

    Discrete Comput. Geom., 59:3 (2018),  507–552
  3. Tropical Combinatorial Nullstellensatz and Fewnomials Testing

    Lecture Notes in Comput. Sci., 10472 (2017),  284–297
  4. Complexity of tropical and min-plus linear prevarieties

    Comput. Complexity, 24:1 (2015),  31–64
  5. Tropical effective primary and dual Nullstellensátz

    Leibniz Internat. Proc. in Inform., 30 (2015),  379–391
  6. Analogue of Newton–Puiseux series for non-holonomic $D$-modules and factoring

    Mosc. Math. J., 9:4 (2009),  775–800
  7. Algebraic cryptography: new constructions and their security against provable break

    Algebra i Analiz, 20:6 (2008),  119–147
  8. Complexity of the Standard Basis of a $D$-Module

    Algebra i Analiz, 20:5 (2008),  41–82
  9. Instability, complexity, and evolution

    Zap. Nauchn. Sem. POMI, 360 (2008),  31–69
  10. Time hierarchies for cryptographic function inversion with advice

    Zap. Nauchn. Sem. POMI, 358 (2008),  54–76
  11. Evolution in random environment and structural instability

    Zap. Nauchn. Sem. POMI, 325 (2005),  28–60
  12. Complexity of semialgebraic proofs

    Mosc. Math. J., 2:4 (2002),  647–679
  13. On non-abelian homomorphic public-key cryptosystems

    Zap. Nauchn. Sem. POMI, 293 (2002),  39–58
  14. Public-key cryptography and invariant theory

    Zap. Nauchn. Sem. POMI, 293 (2002),  26–38
  15. Testing the shift-equivalence of polynomials using quantum machines

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 34 (2001),  98–116
  16. Double-exponential growth of the number of vectors of solutions of polynomial systems

    Zap. Nauchn. Sem. POMI, 277 (2001),  47–52
  17. Computation of a path with a minimal number of links in a given homotopy class between semi-algebraic obstacles in the plane

    Algebra i Analiz, 10:2 (1998),  124–147
  18. Deviation theorems for pfaffian sigmoids

    Algebra i Analiz, 6:1 (1994),  127–131
  19. Deviation theorems for solutions of linear ordinary differential equations and applications to parallel complexity of sigmoids

    Algebra i Analiz, 6:1 (1994),  110–126
  20. Complexity of irreducibility testing for a system of linear ordinary differential equations

    Zap. Nauchn. Sem. LOMI, 192 (1991),  60–68
  21. Complexity of solving linears systems in the rings of differential operators

    Zap. Nauchn. Sem. LOMI, 192 (1991),  47–60
  22. Finding connected components of a semialgebraic set in subexponential time

    Zap. Nauchn. Sem. LOMI, 192 (1991),  3–46
  23. Determination of the number of connected components of a semi-algebraic set in subexponential time

    Dokl. Akad. Nauk SSSR, 314:5 (1990),  1040–1043
  24. The complexity of computing the genus of a system of exterior differential equations

    Dokl. Akad. Nauk SSSR, 306:1 (1989),  26–30
  25. Complexity of computations in commutative division of the USSR Academy of Sciences

    Mat. Zametki, 46:1 (1989),  96–104
  26. Complexity of factoring and GCD calculating for linear ordinary differential operators

    Zap. Nauchn. Sem. LOMI, 176 (1989),  68–103
  27. Complexity of quantifier elimination in the theory of ordinary differentially closed fields

    Zap. Nauchn. Sem. LOMI, 176 (1989),  53–67
  28. Complexity of the factorization of a linear ordinary differential operator

    Dokl. Akad. Nauk SSSR, 303:1 (1988),  16–20
  29. Complexity of deciding the first-order theory of real closed fields

    Zap. Nauchn. Sem. LOMI, 174 (1988),  53–100
  30. Solving systems of polynomial inequalities over real closed fields in subexponential time

    Zap. Nauchn. Sem. LOMI, 174 (1988),  3–36
  31. The complexity of the decision problem for the first order theory of algebraically closed fields

    Izv. Akad. Nauk SSSR Ser. Mat., 50:5 (1986),  1106–1120
  32. Finding real solutions of systems of algebraic inequalities in subexponential time

    Dokl. Akad. Nauk SSSR, 283:6 (1985),  1294–1299
  33. Fast factorization of polynomials into irreducible ones and the solution of systems of algebraic equations

    Dokl. Akad. Nauk SSSR, 275:6 (1984),  1302–1306
  34. Factoring polynomials over a finite field and solving systems of algebraic equations

    Zap. Nauchn. Sem. LOMI, 137 (1984),  20–79
  35. Lower hounds in the algebraic computational complexity

    Zap. Nauchn. Sem. LOMI, 118 (1982),  25–82
  36. An analogue of the Bruhat decomposition for the closure of the cone of a Chevalley group of the classical series

    Dokl. Akad. Nauk SSSR, 257:5 (1981),  1040–1044
  37. On the complexity of the “wild” matrix problems and of the isomorphism of algebras and of graphs

    Zap. Nauchn. Sem. LOMI, 105 (1981),  10–17
  38. On the Eisenbud–Levine formula over a perfect field

    Dokl. Akad. Nauk SSSR, 252:1 (1980),  24–27
  39. The rank of a pair of matrices and convolution

    Uspekhi Mat. Nauk, 34:2(206) (1979),  193–194
  40. Two reductions of graph isomorphism to problems for polynomials

    Zap. Nauchn. Sem. LOMI, 88 (1979),  56–61
  41. Time bounds of multidimensional Turing machines

    Zap. Nauchn. Sem. LOMI, 88 (1979),  47–55
  42. Relation between rank and multiplicative complexity of a bilinear form over a commutative Noetherian ring

    Zap. Nauchn. Sem. LOMI, 86 (1979),  66–81
  43. The algebraic complexity of computing a family of bilinear forms

    Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979),  563–580
  44. Imbedding theorems for Turing machines of different dimensions and Kolmogorov's algorithms

    Dokl. Akad. Nauk SSSR, 234:1 (1977),  15–18
  45. Problem of path connections in graphs

    Zap. Nauchn. Sem. LOMI, 68 (1977),  26–29
  46. A lower bound for the computational complexity of a set of disjunctives in a monotone basis

    Zap. Nauchn. Sem. LOMI, 68 (1977),  19–25
  47. Application of separability and independence notions for proving lower bounds of circuit complexity

    Zap. Nauchn. Sem. LOMI, 60 (1976),  38–48
  48. Kolmogoroff algorithms are stronger than turing machines

    Zap. Nauchn. Sem. LOMI, 60 (1976),  29–37
  49. On the algebraic complexity of a pair of bilinear forms

    Zap. Nauchn. Sem. LOMI, 47 (1974),  159–163

  50. Nikolai Aleksandrovich Shanin (obituary)

    Uspekhi Mat. Nauk, 68:4(412) (2013),  173–176
  51. Nikolai Aleksandrovich Shanin (on his 80th birthday)

    Uspekhi Mat. Nauk, 56:3(339) (2001),  181–184


© Steklov Math. Inst. of RAS, 2026