RUS  ENG
Full version
PEOPLE

Sgibnev Mikhail Sergeyevich

Publications in Math-Net.Ru

  1. The renewal equation with unbounded inhomogeneous term

    Sib. Èlektron. Mat. Izv., 19:1 (2022),  81–90
  2. On the uniqueness of the solution to the Wiener–Hopf equation with probability kernel

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1146–1152
  3. The Wiener–Hopf equation with probability kernel of oscillating type

    Sib. Èlektron. Mat. Izv., 17 (2020),  1288–1298
  4. The discrete wiener–hopf equation whose kernel is a probability distribution with positive drift

    Sibirsk. Mat. Zh., 61:2 (2020),  408–417
  5. The discrete Wiener–Hopf equation with submultiplicative asymptotics of the solution

    Sib. Èlektron. Mat. Izv., 16 (2019),  1600–1611
  6. The Wiener–Hopf equation in measures with probability kernel

    Sib. Èlektron. Mat. Izv., 16 (2019),  609–617
  7. The discrete Wiener–Hopf equation with probability kernel of oscillating type

    Sibirsk. Mat. Zh., 60:3 (2019),  664–675
  8. On Stone's renewal theorem for arithmetic distributions

    Diskr. Mat., 29:2 (2017),  84–95
  9. On the inhomogeneous conservative Wiener–Hopf equation

    Sibirsk. Mat. Zh., 58:6 (2017),  1401–1417
  10. Exact asymptotics of the solution to a difference equation of general type

    Sib. J. Pure and Appl. Math., 17:1 (2017),  45–54
  11. An asymptotic expansion of the solution of a matrix difference equation of general form

    Mat. Sb., 205:12 (2014),  141–154
  12. Behavior at infinity of a solution to a matrix differential-difference equation

    Sibirsk. Mat. Zh., 55:3 (2014),  650–665
  13. On Invertibility Conditions for Elements of Banach Algebras of Measures

    Mat. Zametki, 93:5 (2013),  772–774
  14. Behavior at infinity of a solution to a differential-difference equation

    Sibirsk. Mat. Zh., 53:6 (2012),  1413–1432
  15. On the existence of a solution of a homogeneous system of generalized Wiener–Hopf equations

    Izv. RAN. Ser. Mat., 74:3 (2010),  157–168
  16. An asymptotic property of the solution to the homogeneous generalized Wiener–Hopf equation

    Sibirsk. Mat. Zh., 51:6 (2010),  1430–1434
  17. The uniqueness of a solution to the renewal type system of integral equations on the line

    Sibirsk. Mat. Zh., 51:1 (2010),  204–211
  18. Semimultiplicative moments of factors in Wiener–Hopf matrix factorization

    Mat. Sb., 199:2 (2008),  115–130
  19. An asymptotic expansion of the solution to a system of integrodifferential equations with exact asymptotics for the remainder

    Sibirsk. Mat. Zh., 49:3 (2008),  650–667
  20. Homogeneous conservative Wiener–Hopf equation

    Mat. Sb., 198:9 (2007),  123–132
  21. Asymptotics of solutions of an integro-differential and an integral equation

    Differ. Uravn., 42:9 (2006),  1222–1232
  22. Exact asymptotic expansions for solutions of multi-dimensional renewal equations

    Izv. RAN. Ser. Mat., 70:2 (2006),  159–178
  23. The matrix analogue of the Blackwell renewal theorem on the real line

    Mat. Sb., 197:3 (2006),  69–86
  24. Systems of Renewal-Type Integral Equations on the Line

    Differ. Uravn., 40:1 (2004),  128–137
  25. Exact asymptotic behaviour of the renewal measure in the “critical” case

    Fundam. Prikl. Mat., 8:3 (2002),  911–920
  26. Semimultiplicative estimates for the solution of the multidimensional renewal equation

    Izv. RAN. Ser. Mat., 66:3 (2002),  159–174
  27. Stone decomposition for a matrix renewal measure on a half-line

    Mat. Sb., 192:7 (2001),  97–106
  28. Strongly subexponential distributions, and Banach algebras of measures

    Sibirsk. Mat. Zh., 40:5 (1999),  1137–1146
  29. Banach algebras of measures on the line with given asymptotics of distributions at infinity

    Sibirsk. Mat. Zh., 40:3 (1999),  660–672
  30. On the distribution of the supremumof a random walk when the characteristic equation has roots

    Teor. Veroyatnost. i Primenen., 43:2 (1998),  383–390
  31. Asymptotics of the generalized renewal functions when the variance is finite

    Teor. Veroyatnost. i Primenen., 42:3 (1997),  632–637
  32. Asymptotics of the densities of higher-order renewal epochs

    Trudy Inst. Mat. SO RAN, 20 (1993),  246–256
  33. Exponential estimates for the rate of convergence of higher renewal moments

    Sibirsk. Mat. Zh., 32:4 (1991),  143–152
  34. Asymptotic behavior of higher-order moments of renewals

    Teor. Veroyatnost. i Primenen., 36:3 (1991),  494–504
  35. Asymptotics of infinitely divisible distributions on $\mathbf{R}$

    Sibirsk. Mat. Zh., 31:1 (1990),  135–140
  36. Asymptotics of infinitely divisible distributions in $\mathbf{R}^n$

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 13 (1989),  100–116
  37. Banach algebras and infinitely divisible distributions

    Mat. Zametki, 46:4 (1989),  60–65
  38. Banach algebras of measures of class

    Sibirsk. Mat. Zh., 29:4 (1988),  162–171
  39. On the renewal theorem in the case of infinite variance

    Sibirsk. Mat. Zh., 22:5 (1981),  178–189
  40. Banach algebras of functions that have identical asymptotic behavior at infinity

    Sibirsk. Mat. Zh., 22:3 (1981),  179–187
  41. Banach algebras of measures on the line

    Sibirsk. Mat. Zh., 21:2 (1980),  160–169
  42. Asymptotic analysis of the density of the renewal function

    Sibirsk. Mat. Zh., 20:1 (1979),  141–151
  43. Banach algebras of absolutely continuous measures on the line

    Sibirsk. Mat. Zh., 20:1 (1979),  119–127
  44. Maximal ideals of Banach algebras of measures on the real line

    Mat. Zametki, 24:3 (1978),  315–318
  45. Banach algebras of absolutely continuous measures on a straight line

    Funktsional. Anal. i Prilozhen., 11:3 (1977),  92–93
  46. Distribution of the supremum of sums of independent variables with negative drift

    Mat. Zametki, 22:5 (1977),  763–770


© Steklov Math. Inst. of RAS, 2026