|
|
Publications in Math-Net.Ru
-
The renewal equation with unbounded inhomogeneous term
Sib. Èlektron. Mat. Izv., 19:1 (2022), 81–90
-
On the uniqueness of the solution to the Wiener–Hopf equation with probability kernel
Sib. Èlektron. Mat. Izv., 18:2 (2021), 1146–1152
-
The Wiener–Hopf equation with probability kernel of oscillating type
Sib. Èlektron. Mat. Izv., 17 (2020), 1288–1298
-
The discrete wiener–hopf equation whose kernel is a probability distribution with positive drift
Sibirsk. Mat. Zh., 61:2 (2020), 408–417
-
The discrete Wiener–Hopf equation with submultiplicative asymptotics of the solution
Sib. Èlektron. Mat. Izv., 16 (2019), 1600–1611
-
The Wiener–Hopf equation in measures with probability kernel
Sib. Èlektron. Mat. Izv., 16 (2019), 609–617
-
The discrete Wiener–Hopf equation with probability kernel of oscillating type
Sibirsk. Mat. Zh., 60:3 (2019), 664–675
-
On Stone's renewal theorem for arithmetic distributions
Diskr. Mat., 29:2 (2017), 84–95
-
On the inhomogeneous conservative Wiener–Hopf equation
Sibirsk. Mat. Zh., 58:6 (2017), 1401–1417
-
Exact asymptotics of the solution to a difference equation of general type
Sib. J. Pure and Appl. Math., 17:1 (2017), 45–54
-
An asymptotic expansion of the solution of a matrix difference equation of general form
Mat. Sb., 205:12 (2014), 141–154
-
Behavior at infinity of a solution to a matrix differential-difference equation
Sibirsk. Mat. Zh., 55:3 (2014), 650–665
-
On Invertibility Conditions for Elements of Banach Algebras of Measures
Mat. Zametki, 93:5 (2013), 772–774
-
Behavior at infinity of a solution to a differential-difference equation
Sibirsk. Mat. Zh., 53:6 (2012), 1413–1432
-
On the existence of a solution of a homogeneous system of generalized Wiener–Hopf equations
Izv. RAN. Ser. Mat., 74:3 (2010), 157–168
-
An asymptotic property of the solution to the homogeneous generalized Wiener–Hopf equation
Sibirsk. Mat. Zh., 51:6 (2010), 1430–1434
-
The uniqueness of a solution to the renewal type system of integral equations on the line
Sibirsk. Mat. Zh., 51:1 (2010), 204–211
-
Semimultiplicative moments of factors in Wiener–Hopf matrix factorization
Mat. Sb., 199:2 (2008), 115–130
-
An asymptotic expansion of the solution to a system of integrodifferential equations with exact asymptotics for the remainder
Sibirsk. Mat. Zh., 49:3 (2008), 650–667
-
Homogeneous conservative Wiener–Hopf equation
Mat. Sb., 198:9 (2007), 123–132
-
Asymptotics of solutions of an integro-differential and an integral equation
Differ. Uravn., 42:9 (2006), 1222–1232
-
Exact asymptotic expansions for solutions of multi-dimensional
renewal equations
Izv. RAN. Ser. Mat., 70:2 (2006), 159–178
-
The matrix analogue of the Blackwell renewal theorem on the real line
Mat. Sb., 197:3 (2006), 69–86
-
Systems of Renewal-Type Integral Equations on the Line
Differ. Uravn., 40:1 (2004), 128–137
-
Exact asymptotic behaviour of the renewal measure in the “critical” case
Fundam. Prikl. Mat., 8:3 (2002), 911–920
-
Semimultiplicative estimates for the solution of the multidimensional renewal equation
Izv. RAN. Ser. Mat., 66:3 (2002), 159–174
-
Stone decomposition for a matrix renewal measure on a half-line
Mat. Sb., 192:7 (2001), 97–106
-
Strongly subexponential distributions, and Banach algebras of measures
Sibirsk. Mat. Zh., 40:5 (1999), 1137–1146
-
Banach algebras of measures on the line with given asymptotics of distributions at infinity
Sibirsk. Mat. Zh., 40:3 (1999), 660–672
-
On the distribution of the supremumof a random walk when the characteristic equation has roots
Teor. Veroyatnost. i Primenen., 43:2 (1998), 383–390
-
Asymptotics of the generalized renewal functions when the variance is finite
Teor. Veroyatnost. i Primenen., 42:3 (1997), 632–637
-
Asymptotics of the densities of higher-order renewal epochs
Trudy Inst. Mat. SO RAN, 20 (1993), 246–256
-
Exponential estimates for the rate of convergence of higher renewal moments
Sibirsk. Mat. Zh., 32:4 (1991), 143–152
-
Asymptotic behavior of higher-order moments of renewals
Teor. Veroyatnost. i Primenen., 36:3 (1991), 494–504
-
Asymptotics of infinitely divisible distributions on $\mathbf{R}$
Sibirsk. Mat. Zh., 31:1 (1990), 135–140
-
Asymptotics of infinitely divisible distributions in $\mathbf{R}^n$
Trudy Inst. Mat. Sib. Otd. AN SSSR, 13 (1989), 100–116
-
Banach algebras and infinitely divisible distributions
Mat. Zametki, 46:4 (1989), 60–65
-
Banach algebras of measures of class
Sibirsk. Mat. Zh., 29:4 (1988), 162–171
-
On the renewal theorem in the case of infinite variance
Sibirsk. Mat. Zh., 22:5 (1981), 178–189
-
Banach algebras of functions that have identical asymptotic behavior at infinity
Sibirsk. Mat. Zh., 22:3 (1981), 179–187
-
Banach algebras of measures on the line
Sibirsk. Mat. Zh., 21:2 (1980), 160–169
-
Asymptotic analysis of the density of the renewal function
Sibirsk. Mat. Zh., 20:1 (1979), 141–151
-
Banach algebras of absolutely continuous measures on the line
Sibirsk. Mat. Zh., 20:1 (1979), 119–127
-
Maximal ideals of Banach algebras of measures on the real line
Mat. Zametki, 24:3 (1978), 315–318
-
Banach algebras of absolutely continuous measures on a straight line
Funktsional. Anal. i Prilozhen., 11:3 (1977), 92–93
-
Distribution of the supremum of sums of independent variables with negative drift
Mat. Zametki, 22:5 (1977), 763–770
© , 2026