RUS  ENG
Full version
PEOPLE

Poryazov Vasilii Andreevich

Publications in Math-Net.Ru

  1. The methodology and numerical calculations for the non-stationary burning rate of a high-energy material according to the well-known law of pressure variation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 95,  124–136
  2. Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. II. Numerical modeling results

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 94,  175–187
  3. Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume

    Chelyab. Fiz.-Mat. Zh., 9:2 (2024),  261–267
  4. Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. I. Experiment: methodology, processing, results

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92,  125–143
  5. Influence of aluminum dispersion on acoustic admittance of the solid propellant combustion surface

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92,  79–88
  6. Experimental study of the unsteady burning rate of high-energy materials under depressurization

    Fizika Goreniya i Vzryva, 59:2 (2023),  133–140
  7. Combustion of a mixed solid fuel with the additive of boron powder

    Fizika Goreniya i Vzryva, 58:5 (2022),  106–114
  8. Numerical simulation of combustion of a mixed solid fuel containing boron powder

    Fizika Goreniya i Vzryva, 58:2 (2022),  78–87
  9. Combustion of the metallized composite solid chunk fuel charge with a flat channel in a mass force field

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 75,  113–121
  10. Simulation of ignition and combustion of boron-containing solid propellants

    Fizika Goreniya i Vzryva, 57:3 (2021),  58–64
  11. Numerical simulation of combustion of the composite solid propellant containing bidispersed boron powder

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 72,  131–139
  12. Mathematical modeling on ignition of metallized solid propellant by a convective high temperature flow

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68,  126–140
  13. Calculation of the ignition stages and steady-state combustion of a metallized solid propellant under laser radiation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 59,  94–104
  14. Mathematical modeling of the erosive burning of metallized solid propellants

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 58,  119–127
  15. Flame propagation velocity in an aerosuspension of nanoscale aluminum powder

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 53,  95–106
  16. Mathematical model and calculation of the unsteady combustion rate of the metallized solid rocket propellants

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 50,  99–111
  17. Combustion of the solid propellant with addition of aluminum powder under an acceleration load

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 45,  95–103
  18. Mathematical modeling of combustion of a frozen suspension of nanosized aluminum

    Fizika Goreniya i Vzryva, 52:2 (2016),  60–66
  19. Numerical simulation of the extinction of N powder by a pressure drop based on a coupled combustion model

    Fizika Goreniya i Vzryva, 51:6 (2015),  47–52
  20. The influence of aluminum particle dispersion on the burning rate of metallized solid propellants

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 1(33),  96–104


© Steklov Math. Inst. of RAS, 2026