|
|
Publications in Math-Net.Ru
-
Commutative local rings over which every upper-triangular matrix is the sum of an idempotent and a $q$-potent that commute
Izv. Vyssh. Uchebn. Zaved. Mat., 2026, no. 1, 72–84
-
Fields over which matrices can be represented as the sum of potent and nilpotent matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 10, 78–82
-
The second-kind involutions of upper triangular matrix algebras
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 11, 105–110
-
Representability of matrices over commutative rings as sums of two potent matrices
Sibirsk. Mat. Zh., 65:6 (2024), 1039–1060
-
Rings, matrices over which are representable as the sum of two potent matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12, 90–94
-
Involutions in algebras of upper-triangular matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 6, 11–30
-
Rings over which matrices are sums of idempotent and $q$-potent matrices
Sibirsk. Mat. Zh., 62:1 (2021), 3–18
-
Direct projective modules, direct injective modules, and their generalizations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 164 (2019), 125–139
-
Isomorphisms of formal matrix rings with zero trace ideals
Sibirsk. Mat. Zh., 59:3 (2018), 659–675
-
Isomorphisms of formal matrix incidence rings
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 12, 84–91
-
Generalized matrix rings and generalization of incidence algebras
Chebyshevskii Sb., 16:3 (2015), 422–449
-
On certain classes of rings of formal matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 3, 3–14
-
Formal matrix rings and their isomorphisms
Sibirsk. Mat. Zh., 56:6 (2015), 1199–1214
© , 2026