RUS  ENG
Full version
PEOPLE

Tapkin Danil' Tagirzyanovich

Publications in Math-Net.Ru

  1. Commutative local rings over which every upper-triangular matrix is the sum of an idempotent and a $q$-potent that commute

    Izv. Vyssh. Uchebn. Zaved. Mat., 2026, no. 1,  72–84
  2. Fields over which matrices can be represented as the sum of potent and nilpotent matrices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 10,  78–82
  3. The second-kind involutions of upper triangular matrix algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 11,  105–110
  4. Representability of matrices over commutative rings as sums of two potent matrices

    Sibirsk. Mat. Zh., 65:6 (2024),  1039–1060
  5. Rings, matrices over which are representable as the sum of two potent matrices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12,  90–94
  6. Involutions in algebras of upper-triangular matrices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 6,  11–30
  7. Rings over which matrices are sums of idempotent and $q$-potent matrices

    Sibirsk. Mat. Zh., 62:1 (2021),  3–18
  8. Direct projective modules, direct injective modules, and their generalizations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 164 (2019),  125–139
  9. Isomorphisms of formal matrix rings with zero trace ideals

    Sibirsk. Mat. Zh., 59:3 (2018),  659–675
  10. Isomorphisms of formal matrix incidence rings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 12,  84–91
  11. Generalized matrix rings and generalization of incidence algebras

    Chebyshevskii Sb., 16:3 (2015),  422–449
  12. On certain classes of rings of formal matrices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 3,  3–14
  13. Formal matrix rings and their isomorphisms

    Sibirsk. Mat. Zh., 56:6 (2015),  1199–1214


© Steklov Math. Inst. of RAS, 2026