RUS  ENG
Full version
PEOPLE

Platonova Mariya V

Publications in Math-Net.Ru

  1. On a probabilistic approach to the Cauchy problem solution for an evolution equation with a higher even-order differential operator and a variable coefficient

    Zap. Nauchn. Sem. POMI, 544 (2025),  262–273
  2. Branching diffusion processes in periodic media

    Zap. Nauchn. Sem. POMI, 535 (2024),  214–236
  3. A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations

    Zap. Nauchn. Sem. POMI, 535 (2024),  200–213
  4. Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph

    Teor. Veroyatnost. i Primenen., 68:2 (2023),  277–300
  5. Probabilistic approximation of the Schrödinger equation by complex-valued random processes

    Zap. Nauchn. Sem. POMI, 526 (2023),  17–28
  6. An analogue of the Feynman–Kac formula for the multidimensional Shrödinger equation

    Zap. Nauchn. Sem. POMI, 525 (2023),  96–108
  7. Prospects for anisotropic superfluidity in a Fermi gas of dysprosium

    Kvantovaya Elektronika, 52:6 (2022),  528–531
  8. An analogue of the Feynman–Kac formula for a high-order operator

    Teor. Veroyatnost. i Primenen., 67:1 (2022),  81–99
  9. On a probabilistic approximation of a group of unitary operators

    Zap. Nauchn. Sem. POMI, 510 (2022),  211–224
  10. Asymptotic behaviour of some branching random walk functionals mean values

    Zap. Nauchn. Sem. POMI, 505 (2021),  185–206
  11. Probabilistic approximation of the evolution operator $e^{itH}$, where $H=\dfrac{(-1)^md^{2m}}{(2m)!dx^{2m}}$

    Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020),  78–81
  12. Probabilistic approximation of the solution of the Cauchy problem for the higher-order Schrödinger equation

    Teor. Veroyatnost. i Primenen., 65:4 (2020),  710–724
  13. Branching random walks on $\mathbf{Z}^d$ with periodic branching sources

    Teor. Veroyatnost. i Primenen., 64:2 (2019),  283–307
  14. On a limit theorem related to a Cauchy problem solution for the Schrödinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$

    Zap. Nauchn. Sem. POMI, 486 (2019),  254–264
  15. On the variance of the particle number of the supercritical branching random walk on periodic graphs

    Zap. Nauchn. Sem. POMI, 486 (2019),  233–253
  16. Limit theorems on convergence to generalized Cauchy type processes

    Zap. Nauchn. Sem. POMI, 486 (2019),  214–228
  17. Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$

    Zap. Nauchn. Sem. POMI, 474 (2018),  199–212
  18. Nonprobabilistic analogues of the Cauchy process

    Zap. Nauchn. Sem. POMI, 474 (2018),  183–194
  19. A probabilistic approximation of the Cauchy problem solution for the Schrödinger equation with a fractional derivative operator

    Zap. Nauchn. Sem. POMI, 466 (2017),  257–272
  20. Asymptotic behavior of the mean number of particles of branching random walk on $\mathbf Z^d$ with periodic sources of branching

    Zap. Nauchn. Sem. POMI, 466 (2017),  234–256
  21. Probabilistic representation for Cauchy problem solution for evolution equation with Riemann–Liouville operator

    Teor. Veroyatnost. i Primenen., 61:3 (2016),  417–438
  22. A probabilistic representation of the Cauchy problem solution for an evolution equation with the differential operator of the order greater than 2

    Zap. Nauchn. Sem. POMI, 454 (2016),  220–237
  23. Symmetric $\alpha$-stable distributions for noninteger $\alpha>2$ and related stochastic processes

    Zap. Nauchn. Sem. POMI, 442 (2015),  101–117
  24. Nonprobabilistic infinitely divisible distributions: the Lévy–Khinchin representation, limit theorems

    Zap. Nauchn. Sem. POMI, 431 (2014),  145–177


© Steklov Math. Inst. of RAS, 2026