RUS  ENG
Full version
PEOPLE

Slipchenko Sergey Olegovich

Publications in Math-Net.Ru

  1. Áóôåðíûå ñòðóêòóðû GaAs/Si, ïîëó÷åííûå ìåòîäîì ãàçîôàçíîé ýïèòàêñèè èç ìåòàëëîîðãàíè÷åñêèõ ñîåäèíåíèé

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 52:7 (2026),  48–52
  2. High-speed current switches based on AlGaAs/GaAs heterostructure thyristors with a thick $p$-base (8 $\mu$m)

    Fizika i Tekhnika Poluprovodnikov, 59:10 (2025),  629–634
  3. InAs/InAsSbP bridge photodiodes: features of the fabrication technology

    Fizika i Tekhnika Poluprovodnikov, 59:8 (2025),  505–509
  4. Study of the mask shape effect on the spatial distribution of GaAs layer growth rate in MOCVD selective area epitaxy

    Fizika i Tekhnika Poluprovodnikov, 59:8 (2025),  452–457
  5. Design optimization of InGaAsP/InP heterostructures of high-power laser diodes emitting at a wavelength of 1.55 $\mu$m

    Fizika i Tekhnika Poluprovodnikov, 59:3 (2025),  171–178
  6. Resonators of IR lasers based on two-dimensional photonic crystals for organization of surface output of radiation

    Fizika i Tekhnika Poluprovodnikov, 59:2 (2025),  113–121
  7. Single-mode quantum-cascade lasers with variable etching depth of grating slits

    Fizika i Tekhnika Poluprovodnikov, 59:1 (2025),  23–28
  8. Tuning the radiation frequency of a mid-IR quantum cascade laser

    Fizika i Tekhnika Poluprovodnikov, 59:1 (2025),  13–15
  9. Tunable quantum cascade laser for methane concentration measurement

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:22 (2025),  66–70
  10. Output losses in semiconductor laser resonator formed by a photonic crystal

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:19 (2025),  36–40
  11. Sources of high-power laser pulses of sub-nanosecond duration based on thyristor switch-laser diode structures for the 1500nm spectral range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:17 (2025),  49–52
  12. Sources of high-power laser pulses at a wavelength of 1550 nm based on thyristor switch-laser designs

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:16 (2025),  21–25
  13. Single-mode lasing on radial modes in ring cavity quantum-cascade lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:11 (2025),  52–56
  14. Compact high-power nanosecond-duration laser pulse sources (940 nm) based on “semiconductor laser – thyristor switch” vertical stacks

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:11 (2025),  7–10
  15. The effect of the pump pulse duration and duty cycle on the power characteristics of quantum cascade lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:4 (2025),  54–58
  16. Analysis of saturation mechanisms of high-power pulsed semiconductor lasers based on the InGaAsP/InP heterostructure emitting at a wavelength of 1.55 μm

    Kvantovaya Elektronika, 55:3 (2025),  141–145
  17. Multimode semiconductor lasers with surface distributed feedback

    Optics and Spectroscopy, 132:11 (2024),  1131–1133
  18. A pulsed photoactivatable switch based on a semiconductor laser and an AlGaAs/GaAs high-voltage photodiode

    Fizika i Tekhnika Poluprovodnikov, 58:12 (2024),  703–708
  19. Micro-Raman spectroscopy study of radiation defects formed by Ga$^+$ focused ion beam in GaAs/Al$_{0.3}$Ga$_{0.7}$As

    Fizika i Tekhnika Poluprovodnikov, 58:10 (2024),  552–555
  20. Drift transport of charge carriers in silicon $p^+$$n$$n^+$ structures at temperatures $\le$ 100 mK

    Fizika i Tekhnika Poluprovodnikov, 58:8 (2024),  415–423
  21. Hybrid stacks of thyristor switch – semiconductor laser based on AlInGaAsP/InP heterostructures for high-power pulsed laser sources (1400–1500 nm)

    Fizika i Tekhnika Poluprovodnikov, 58:3 (2024),  165–170
  22. Low-voltage current switches based on AlInGaAsP/InP thyristor heterostructures for nanosecond pulsed laser emitters (1.5 $\mu$m)

    Fizika i Tekhnika Poluprovodnikov, 58:3 (2024),  161–164
  23. The effect of the cavity length on the output optical power of semiconductor laser-thyristors based on AlGaAs/GaAs/InGaAs heterostructures

    Fizika i Tekhnika Poluprovodnikov, 58:2 (2024),  96–105
  24. High-power tunable quantum-cascade laser

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:22 (2024),  65–68
  25. Quantum-cascade lasers based on an active region with low sensitivity to thickness fluctuations

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:16 (2024),  18–21
  26. Tuning the emission frequency of U-shaped mid-infrared quantum cascade lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:5 (2024),  23–27
  27. Thyristor switches based on hetero and homostructures (Al)GaAs/GaAs for generating high-frequency nanosecond current pulses

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:4 (2024),  43–46
  28. Temperature dependence of the output optical power of semiconductor lasers–thyristors based on AlGaAs/GaAs/InGaAs heterostructures

    Kvantovaya Elektronika, 54:4 (2024),  218–223
  29. InGaAs/AlInAs/InP quantum-cascade lasers with reflective and antireflective optical coatings

    Kvantovaya Elektronika, 54:2 (2024),  100–103
  30. Lateral mode selection of single-mode laser diode microstripe bar (1050 nm) in external cavity

    Fizika i Tekhnika Poluprovodnikov, 57:8 (2023),  693–699
  31. High-current low-voltage switches for nanosecond pulse durations based on thyristor (Al)GaAs/GaAs homo- and heterostructures

    Fizika i Tekhnika Poluprovodnikov, 57:8 (2023),  678–683
  32. Luminescence in $p$$i$$n$ structures with compensated quantum wells

    Fizika i Tekhnika Poluprovodnikov, 57:8 (2023),  663–673
  33. Switching (turn-on) dynamics of low-voltage InP homothyristors

    Fizika i Tekhnika Poluprovodnikov, 57:4 (2023),  295–300
  34. Generation of random sequences by switching transverse modes in a quantum cascade laser

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:22 (2023),  35–38
  35. Low-voltage InP heterostyristors for 50–150 ns current pulses generation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:16 (2023),  29–32
  36. Metal–dielectric mirror coatings for 4–5-μm quantum-cascade lasers

    Kvantovaya Elektronika, 53:8 (2023),  641–644
  37. High-power multimode semiconductor lasers (976 nm) based on asymmetric heterostructures with a broadened waveguide and reduced vertical divergence

    Kvantovaya Elektronika, 53:5 (2023),  374–378
  38. Dielectric highly reflective mirror coatings for quantum cascade lasers with 4 – 5 μm emission wavelength

    Kvantovaya Elektronika, 53:5 (2023),  370–373
  39. Cavity optimisation of high-power InGaAs/AlGaAs/GaAs semiconductor lasers (λ=1060 nm) for efficient operation at ultrahigh pulsed pump currents

    Kvantovaya Elektronika, 53:1 (2023),  17–24
  40. High power and repetition rate integral laser source (1060 nm) based on laser diode array and 2D multi-element opto-thyristor array as a high-speed current switch

    Kvantovaya Elektronika, 53:1 (2023),  11–16
  41. Quasi-cw high-power laser diode mini bars (λ=976 nm) with increased length of a resonator based on asymmetric heterostructures with a broadened waveguide

    Kvantovaya Elektronika, 53:1 (2023),  6–10
  42. Laser diodes (850nm) based on an asymmetric AlGaAs/GaAs heterostructure with a bulk active region for generating high-power subnanosecond optical pulses

    Kvantovaya Elektronika, 53:1 (2023),  1–5
  43. Surface-emitting quantum-cascade lasers with a grating formed by focused ion beam milling

    Fizika i Tekhnika Poluprovodnikov, 56:9 (2022),  908–914
  44. Study of the spatial characteristics of emission of surface-emitting ring quantum-cascade lasers

    Fizika i Tekhnika Poluprovodnikov, 56:6 (2022),  601–606
  45. Features of single-mode emission in 7.5–8.0 $\mu$m range quantum-cascade lasers with a short cavity length

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:5 (2022),  7–10
  46. High-power laser diodes based on InGaAs(Ð)/Al(In)GaAs(P)/GaAs heterostructures with low internal optical losses

    Kvantovaya Elektronika, 52:12 (2022),  1152–1165
  47. Lateral waveguide mode selection for the development of single-mode ridge lasers with a distributed Bragg mirror

    Kvantovaya Elektronika, 52:10 (2022),  889–894
  48. Investigation of the quasi-cw heating dynamics of an active region of high-power semiconductor lasers (λ = 1060 nm) with an ultra-wide emitting aperture (800 μm)

    Kvantovaya Elektronika, 52:9 (2022),  794–798
  49. Analysis of light–current characteristics of high-power semiconductor lasers (1060 nm) in a steady-state 2D model

    Kvantovaya Elektronika, 52:4 (2022),  343–350
  50. High-power quasi-cw semiconductor lasers (1060 nm) with an ultra-wide emitting aperture

    Kvantovaya Elektronika, 52:4 (2022),  340–342
  51. High-power mesa-stripe semiconductor lasers (910 nm) with an ultra-wide emitting aperture based on tunnel-coupled InGaAs/AlGaAs/GaAs heterostructures

    Kvantovaya Elektronika, 52:2 (2022),  174–178
  52. Vertical stacks of pulsed (100 ns) mesa-stripe semiconductor lasers with an ultra-wide (800 μm) aperture emitting kilowatt-level peak power at a wavelength of 1060 nm

    Kvantovaya Elektronika, 52:2 (2022),  171–173
  53. Operating characteristics of semiconductor quantum well lasers as functions of the waveguide region thickness

    Fizika i Tekhnika Poluprovodnikov, 55:12 (2021),  1229–1235
  54. Quantum-cascade laser with radiation output through a textured layer

    Fizika i Tekhnika Poluprovodnikov, 55:11 (2021),  1081–1085
  55. Surface emitting quantum-cascade ring laser

    Fizika i Tekhnika Poluprovodnikov, 55:7 (2021),  602–606
  56. Turn on process spatial dynamics of a thyristor laser (905nm) based on an AlGaAs/InGaAs/GaAs heterostructure

    Fizika i Tekhnika Poluprovodnikov, 55:5 (2021),  466–472
  57. Analysis of the threshold conditions and lasing efficiency of internally circulating modes in large rectangular cavities based on AlGaAs/GaAs/InGaAs laser heterostructures

    Fizika i Tekhnika Poluprovodnikov, 55:5 (2021),  460–465
  58. Isotype $n$-AlGaAs/$n$-GaAs heterostructures optimized for efficient interband radiative recombination under current pumping

    Fizika i Tekhnika Poluprovodnikov, 55:5 (2021),  427–433
  59. High-power CW InGaAs/AlGaAs (1070 nm) lasers with a broadened lateral waveguide of a mesa-stripe structure

    Fizika i Tekhnika Poluprovodnikov, 55:4 (2021),  344–348
  60. Structural and spectroscopic studies of epitaxial GaAs layers grown on compliant substrates based on a superstructure layer and protoporous silicon

    Fizika i Tekhnika Poluprovodnikov, 55:1 (2021),  86–95
  61. Spectroscopic studies of integrated GaAs/Si heterostructures

    Fizika i Tekhnika Poluprovodnikov, 55:1 (2021),  34–40
  62. Heterostructures of quantum-cascade lasers with nonselective overgrowth by metalorganic vapour phase epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:24 (2021),  46–50
  63. Output optical power dynamics of semiconductor lasers (1070 nm) with a few-mode lateral waveguide of mesa-stripe design at ultrahigh drive currents

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:7 (2021),  42–45
  64. Optical absorption in a waveguide based on an n-type AlGaAs heterostructure

    Kvantovaya Elektronika, 51:11 (2021),  987–991
  65. High-power pulsed hybrid semiconductor lasers emitting in the wavelength range 900–920 nm

    Kvantovaya Elektronika, 51:10 (2021),  912–914
  66. High-power AlGaInAs/InP semiconductor lasers with an ultra-narrow waveguide emitting in the spectral range 1.9–2.0 μm

    Kvantovaya Elektronika, 51:10 (2021),  909–911
  67. InGaAs/AlGaAs/GaAs semiconductor lasers ($\lambda$ = 900–920 nm) with broadened asymmetric waveguides and improved current–voltage characteristics

    Kvantovaya Elektronika, 51:10 (2021),  905–908
  68. Comparison of AlGaInAs/InP semiconductor lasers (λ = 1450–1500 nm) with ultra-narrow and strongly asymmetric waveguides

    Kvantovaya Elektronika, 51:4 (2021),  283–286
  69. Semiconductor AlGaInAs/InP lasers (λ = 1450 – 1500 nm) with a strongly asymmetric waveguide

    Kvantovaya Elektronika, 51:2 (2021),  133–136
  70. Light–current characteristics of high-power pulsed semiconductor lasers (1060 nm) operating at increased (up to 90 °C) temperatures

    Kvantovaya Elektronika, 51:2 (2021),  129–132
  71. Experimental technique for studying optical absorption in waveguide layers of semiconductor laser heterostructures

    Kvantovaya Elektronika, 51:2 (2021),  124–128
  72. Spectral dynamics of quantum cascade lasers generating frequency combs in the long-wavelength infrared range

    Zhurnal Tekhnicheskoi Fiziki, 90:8 (2020),  1333–1336
  73. Spectral characteristics of half-ring quantum-cascade lasers

    Optics and Spectroscopy, 128:8 (2020),  1165–1170
  74. Study of the spectra of arched-cavity quantum-cascade lasers

    Optics and Spectroscopy, 128:6 (2020),  696–700
  75. Study of the spatial and current dynamics of optical loss in semiconductor laser heterostructures by optical probing

    Fizika i Tekhnika Poluprovodnikov, 54:8 (2020),  734–742
  76. Switching control model of closed-mode structures in large rectangular cavities based on AlGaAs/InGaAs/GaAs laser heterostructures

    Fizika i Tekhnika Poluprovodnikov, 54:5 (2020),  484–489
  77. Modeling the spatial switch-on dynamics of a laser thyristor ($\lambda$ = 905 nm) based on an AlGaAs/InGaAs/GaAs multi-junction heterostructure

    Fizika i Tekhnika Poluprovodnikov, 54:5 (2020),  478–483
  78. Carrier-transport processes in $n^{+}$-GaAs/$n^{0}$-GaAs/$n^{+}$-GaAs isotype heterostructures with a thin wide-gap AlGaAs barrier

    Fizika i Tekhnika Poluprovodnikov, 54:5 (2020),  452–457
  79. Single-mode lasers (1050 nm) of mesa-stripe design based on an AlGaAs/GaAs heterostructure with an ultra-narrow waveguide

    Fizika i Tekhnika Poluprovodnikov, 54:4 (2020),  414–419
  80. Light characteristics of narrow-stripe high-power semiconductor lasers (1060 nm) based on asymmetric AlGaAs/GaAs heterostructures with a broad waveguide

    Fizika i Tekhnika Poluprovodnikov, 54:4 (2020),  408–413
  81. A study of the spatial-emission characteristics of quantum-cascade lasers for the 8-$\mu$m spectral range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:22 (2020),  51–54
  82. Heterostructures of quantum-cascade laser for the spectral range of 4.6 $\mu$m for obtaining a continuous-wave lasing mode

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:9 (2020),  35–38
  83. AlGaInAs/InP semiconductor lasers with an ultra-narrow waveguide and an increased electron barrier

    Kvantovaya Elektronika, 50:12 (2020),  1123–1125
  84. Triple integrated laser–thyristor

    Kvantovaya Elektronika, 50:11 (2020),  1001–1003
  85. Development and study of high-power quantum-cascade lasers emitting at 4.5 – 4.6 μm

    Kvantovaya Elektronika, 50:11 (2020),  989–994
  86. Lasing dynamics of diode-pumped Yb – Er laser with a passive Q switch exposed to high-power external light

    Kvantovaya Elektronika, 50:9 (2020),  822–825
  87. Leaky wave in high-power AlGaAs/InGaAs/GaAs semiconductor lasers

    Kvantovaya Elektronika, 50:8 (2020),  722–726
  88. 10-W 4.6-μm quantum cascade lasers

    Kvantovaya Elektronika, 50:8 (2020),  720–721
  89. Longitudinal spatial hole burning in high-power semiconductor lasers: numerical analysis

    Kvantovaya Elektronika, 50:2 (2020),  147–152
  90. High-power (>1 W) room-temperature quantum-cascade lasers for the long-wavelength IR region

    Kvantovaya Elektronika, 50:2 (2020),  141–142
  91. Ñlosed mode features in rectangular resonators based on InGaAs/AlGaAs/GaAs laser heterostructures

    Fizika i Tekhnika Poluprovodnikov, 53:6 (2019),  839–843
  92. Specific features of carrier transport in $n^{+}$$n^{0}$$n^{+}$ structures with a GaAs/AlGaAs heterojunction at ultrahigh current densities

    Fizika i Tekhnika Poluprovodnikov, 53:6 (2019),  816–823
  93. Generation of frequency combs by quantum cascade lasers emitting in the 8-$\mu$m wavelength range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:20 (2019),  18–21
  94. High-power quantum-cascade lasers emitting in the 8-$\mu$m wavelength range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:14 (2019),  48–51
  95. Room temperature lasing of single-mode arched-cavity quantum-cascade lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:8 (2019),  31–33
  96. Experimental studies of the on-state propagation dynamics of low-voltage laser-thyristors based on AlGaAs/InGaAs/GaAs heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:8 (2019),  7–11
  97. Study of multimode semiconductor lasers with buried mesas

    Kvantovaya Elektronika, 49:12 (2019),  1172–1174
  98. Tunable single-frequency source based on a DFB laser array for the spectral region of 1.55 μm

    Kvantovaya Elektronika, 49:12 (2019),  1158–1162
  99. Double integrated laser-thyristor

    Kvantovaya Elektronika, 49:11 (2019),  1011–1013
  100. High-coupling distributed feedback lasers for the 1.55 μm spectral region

    Kvantovaya Elektronika, 49:9 (2019),  801–803
  101. Ultranarrow-waveguide AlGaAs/GaAs/InGaAs lasers

    Kvantovaya Elektronika, 49:7 (2019),  661–665
  102. Pulsed laser module based on a high-power semiconductor laser for the spectral range 1500–1600 nm

    Kvantovaya Elektronika, 49:5 (2019),  488–492
  103. High temperature laser generation of quantum-cascade lasers in the spectral region of 8 $\mu$m

    Fizika Tverdogo Tela, 60:11 (2018),  2251–2254
  104. Turn-on dynamics of quantum cascade lasers with a wavelength of 8100 nm at room temperature

    Zhurnal Tekhnicheskoi Fiziki, 88:11 (2018),  1708–1710
  105. Dual-frequency generation in quantum cascade lasers of the 8-$\mu$m spectral range

    Optics and Spectroscopy, 125:3 (2018),  387–390
  106. All-electric laser beam control based on a quantum-confined heterostructure with an integrated distributed Bragg grating

    Fizika i Tekhnika Poluprovodnikov, 52:12 (2018),  1491–1498
  107. Effect of the waveguide layer thickness on output characteristics of semiconductor lasers with emission wavelength from 1500 to 1600 nm

    Kvantovaya Elektronika, 48:3 (2018),  197–200
  108. All-optical modulator cells based on AlGaAs/GaAs/InGaAs 905-nm laser heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 43:2 (2017),  31–37
  109. Semiconductor AlGaInAs/InP lasers with ultra-narrow waveguides

    Kvantovaya Elektronika, 47:3 (2017),  272–274
  110. Study of the pulse characteristics of semiconductor lasers with a broadened waveguide at low temperatures (110–120 K)

    Fizika i Tekhnika Poluprovodnikov, 50:10 (2016),  1414–1419
  111. On the problem of internal optical loss and current leakage in laser heterostructures based on AlGaInAs/InP solid solutions

    Fizika i Tekhnika Poluprovodnikov, 50:9 (2016),  1247–1252
  112. Properties of AlN films deposited by reactive ion-plasma sputtering

    Fizika i Tekhnika Poluprovodnikov, 49:10 (2015),  1429–1433
  113. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    Fizika i Tekhnika Poluprovodnikov, 49:8 (2015),  1108–1114
  114. Mapping of laser diode radiation intensity by atomic-force microscopy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:18 (2015),  8–15
  115. Suppressing the process of charge carrier delocalization in high-power pulse-pumped semiconductor lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:6 (2015),  10–16
  116. Integrated high-order surface diffraction gratings for diode lasers

    Kvantovaya Elektronika, 45:12 (2015),  1091–1097
  117. Optimisation of cavity parameters for lasers based on AlGaInAsP/InP solid solutions (λ=1470 nm)

    Kvantovaya Elektronika, 45:10 (2015),  879–883
  118. Study of the absorption coefficient in layers of a semiconductor laser heterostructure

    Kvantovaya Elektronika, 45:7 (2015),  604–606
  119. Effect of laser cavity parameters on saturation of light – current characteristics of high-power pulsed lasers

    Kvantovaya Elektronika, 45:7 (2015),  597–600
  120. On the temperature delocalization of carriers in GaAs/AlGaAs/InGaAs quantum-well heterostructures

    Fizika i Tekhnika Poluprovodnikov, 48:10 (2014),  1377–1382
  121. On the control efficiency of a high-power laser thyristor emitting in the 890–910 nm spectral range

    Fizika i Tekhnika Poluprovodnikov, 48:5 (2014),  716–718
  122. Multi-wavelength integrated optical-laser emission modulator based on semiconductor heterostructures

    Fizika i Tekhnika Poluprovodnikov, 48:5 (2014),  710–715
  123. Analysis of the emission efficiency of powerful semiconductor lasers under closed-mode threshold lasing conditions

    Fizika i Tekhnika Poluprovodnikov, 48:5 (2014),  705–709
  124. Laser-diode bars based on AlGaAsP/GaAs heterostructures emitting at a wavelength of 850 nm

    Fizika i Tekhnika Poluprovodnikov, 48:3 (2014),  388–391
  125. Saturation of light – current characteristics of high-power lasers (λ = 1.0 – 1.1 mm) in pulsed regime

    Kvantovaya Elektronika, 44:11 (2014),  993–996
  126. Spectral characteristics of multimode semiconductor lasers with a high-order surface diffraction grating

    Kvantovaya Elektronika, 44:10 (2014),  907–911
  127. AlGaAs/GaAs diode lasers (1020–1100 nm) with an asymmetric broadened single transverse mode waveguide

    Fizika i Tekhnika Poluprovodnikov, 47:8 (2013),  1082–1086
  128. Semiconductor lasers with internal wavelength selection

    Fizika i Tekhnika Poluprovodnikov, 47:1 (2013),  124–128
  129. Semiconductor InGaAs/GaAs injection lasers with waveguides based on a single quantum well

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 39:8 (2013),  9–16
  130. 850-nm diode lasers based on AlGaAsP/GaAs heterostructures

    Fizika i Tekhnika Poluprovodnikov, 46:10 (2012),  1344–1348
  131. Radiative and nonradiative recombination in the active layers of high-power InGaAs/GaAs/AlGaAs laser diodes

    Fizika i Tekhnika Poluprovodnikov, 46:10 (2012),  1339–1343
  132. Temperature dependence of the threshold current density in semiconductor lasers ($\lambda$ = 1050–1070 nm)

    Fizika i Tekhnika Poluprovodnikov, 46:9 (2012),  1234–1238
  133. Thermal delocalization of carriers in semiconductor lasers ($\lambda$ = 1010–1070 nm)

    Fizika i Tekhnika Poluprovodnikov, 46:9 (2012),  1230–1233
  134. Analysis of quenching conditions of Fabry–Perot mode lasing in semiconductor stripe-contact lasers

    Fizika i Tekhnika Poluprovodnikov, 45:10 (2011),  1431–1438
  135. Electroluminescence and absorption spectra of low-optical-loss semiconductor lasers based on InGaAs/AlGaAs/GaAs QW heterostructures

    Fizika i Tekhnika Poluprovodnikov, 45:5 (2011),  682–687
  136. Analysis of threshold conditions for generation of a closed mode in a Fabry–Perot semiconductor laser

    Fizika i Tekhnika Poluprovodnikov, 45:5 (2011),  672–676
  137. Temperature dependence of the threshold current density and external differential quantum efficiency of semiconductor lasers ($\lambda$ = 900–920 nm)

    Fizika i Tekhnika Poluprovodnikov, 44:10 (2010),  1417–1421
  138. The temperature dependence of internal optical losses in semiconductor lasers ($\lambda$ = 900–920 nm)

    Fizika i Tekhnika Poluprovodnikov, 44:10 (2010),  1411–1416
  139. Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers

    Fizika i Tekhnika Poluprovodnikov, 44:6 (2010),  833–836
  140. Pulsed semiconductor lasers with higher optical strength of cavity output mirrors

    Fizika i Tekhnika Poluprovodnikov, 44:6 (2010),  817–821
  141. Temperature delocalization of charge carriers in semiconductor lasers

    Fizika i Tekhnika Poluprovodnikov, 44:5 (2010),  688–693
  142. Dissipation loss of mid-infrared radiation in a dielectric waveguide

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  256–259
  143. A study of epitaxially stacked tunnel-junction semiconductor lasers grown by MOCVD

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  251–255
  144. Effect of the active region thickness on characteristics of semiconductor lasers based on asymmetric AlGaAs/GaAs/InGaAs heterostructures with broadened waveguide

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  246–250
  145. Features of mode locking in laser with quantum well in broad waveguide layer

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:22 (2010),  29–36
  146. Study of non-diffracting light beams from broad-stripe edge-emitting semiconductor lasers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:1 (2010),  22–30

  147. Quantum cascade lasers for the 8-$\mu$m spectral range: technology, design, and analysis

    UFN, 194:1 (2024),  98–105


© Steklov Math. Inst. of RAS, 2026