RUS  ENG
Full version
PEOPLE

Palin Vladimir Vladimirovich

Publications in Math-Net.Ru

  1. Структура множества геометрических решений модельной системы в случае волны разрежения

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  229–270
  2. Limit Passage in the Construction of a Geometric Solution: The Case of a Rarefaction Wave

    Trudy Mat. Inst. Steklova, 315 (2021),  182–201
  3. On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem

    Mat. Zametki, 108:3 (2020),  380–396
  4. On the Structure of Solutions to a Model System That Is Nonstrictly Hyperbolic in the Sense of Petrovskii

    Trudy Mat. Inst. Steklova, 308 (2020),  232–242
  5. Construction of the geometrical solution in the case of a rarefaction wave

    Zap. Nauchn. Sem. POMI, 489 (2020),  55–66
  6. Two-Dimensional Shock Waves for a Model Problem

    Mat. Zametki, 103:6 (2018),  875–883
  7. Geometric solutions of the Riemann problem for the scalar conservation law

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:4 (2018),  620–646
  8. Behavior of stabilizing solutions of the Riccati equation

    Tr. Semim. im. I. G. Petrovskogo, 31 (2016),  110–133
  9. On the inner turbulence paradigm

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:1 (2015),  155–185
  10. On nonviscous solutions of a multicomponent euler system

    CMFD, 53 (2014),  133–154
  11. Scientific heritage of Vladimir Mikhailovich Millionshchikov

    Tr. Semim. im. I. G. Petrovskogo, 30 (2014),  5–41
  12. Solvability of matrix Riccati equations

    Tr. Semim. im. I. G. Petrovskogo, 27 (2009),  276–295
  13. Solvability of quadratic matrix equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 6,  36–41

  14. К 70-летию Валерия Васильевича Козлова

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  3–7


© Steklov Math. Inst. of RAS, 2026