RUS  ENG
Full version
PEOPLE

Ryazanova Lyubov' Sergeevna

Publications in Math-Net.Ru

  1. Algorithms for calculating eigenvalues of second order parabolic differential operators on quantum star graphs with time-varying edges

    J. Comp. Eng. Math., 11:4 (2024),  3–13
  2. Algorithms for calculating the eigenvalues of initial-boundary value problems for a wave differential equation set in a graph with varying edges

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:4 (2024),  29–34
  3. Algorithms for calculating eigenvalues of discrete semi-bounded operators defined on quantum graphs of star type with variable edges

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:4 (2024),  51–65
  4. Algorithms for the computation of the eigenvalues of discrete semi-bounded operators defined on quantum graphs

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:1 (2023),  16–25
  5. Algorithms invenire asymptotic formulas eigenvalues discreta semi-terminus operators

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:2 (2023),  104–110
  6. Numerical methods for solving spectral problems on quantum graphs

    J. Comp. Eng. Math., 8:3 (2021),  49–70
  7. Algorithm for numerical solution of inverse spectral problems generated by Sturm–Liouville operators of an arbitrary even order

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:2 (2021),  52–63
  8. Calculation of the eigenvalues of the problems generated by the arbitrary even order Sturm – Liouville operators

    J. Comp. Eng. Math., 7:3 (2020),  34–44
  9. Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  19–32
  10. Calculation of discrete semi-bounded operators’ eigenvalues with large numbers

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:1 (2019),  10–15
  11. Computational experiment for a class of mathematical models of magnetohydrodynamics

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:1 (2017),  149–155
  12. Calculation of eigenvalues of Couette spectral problem by method of regularized traces

    J. Comp. Eng. Math., 2:4 (2015),  37–47
  13. Numeric method of finding the eigenvalues for the discrete lower semibounded operators

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8,  46–51


© Steklov Math. Inst. of RAS, 2026