RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2013 Volume 53, Number 9, Page 1554 (Mi zvmmf9920)

This article is cited in 4 papers

On the exact solitary wave solutions of a special class of Benjamin–Bona–Mahony equation

Reza Abazari

Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Abstract: The general form of Benjamin-Bona-Mahony equation (BBM) is $ u_t+au_x+bu_{xxt}+(g(u))_x=0,\quad a,b\in\mathbb{R}$, where $ab\ne0$ and $g(u)$ is a $C^2$-smooth nonlinear function, has been proposed by Benjamin et al. In [1] and describes approximately the unidirectional propagation of long wave in certain nonlinear dispersive systems. In this payer, we consider a new class of Benjamin–Bona–Mahony equation (BBM) $u_t+au_x+bu_{xxt}+(pe^u+qe^{-u})_x=0$, $a, b, p, q \in\mathbb{R}$, where $ab\ne0$, and $qp\ne0$, and we obtain new exact solutions for it by using the well-known $(G'/G)$-expansion method. New periodic and solitary wave solutions for these nonlinear equation are formally derived.

Key words: generalized Benjamin-Bona-Mahony (gBBM) equation, solitary wave solutions; $(G'/G)$-expansion method, hyperbolic function solutions, trigonometric function solutions.

UDC: 519.634

MSC: 35Q51, 35Q53, 37K10

Received: 15.03.2013
Revised: 01.04.2013

Language: English

DOI: 10.7868/S0044466913090123


 English version:
Computational Mathematics and Mathematical Physics, 2013, 53:9, 1371–1376

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026