Abstract:
Given a function $\mathbb{L}_2(\mathbb{R})$, its Fourier transform
$$
g(x)=\hat{f}(x)=F[f](x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-ixt}dt,\quad f(t)=F^{-1}[g](t)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{+\infty}g(x)e^{ixt}dx
$$
and the inverse Fourier transform are considered in the space $f\in\mathbb{L}_2(\mathbb{R})$. New estimates are presented for the integral $
\int_{|t|\geqslant N}|g(t)|^2dt=\int_{|t|\geqslant N}|\hat{f}(t)|^2dt, \quad N\geqslant1
$, in the vase of $f\in\mathbb{L}_2(\mathbb{R})$ characterized by the generalized modulus of continuity of the $k$th order constructed with the help of the Steklov function. Some other estimates associated with this integral are proved.
Key words:Fourier transform in $\mathbb{L}_2(\mathbb{R})$, inverse Fourier transform, Steklov function, generalized modulus of continuity, estimates.